
 

 e-ISSN: 2289-8131   Vol. 10 No. 1-3 163 

 

Transfer Learning Through Policy Abstraction 

Using Learning Vector Quantization 
 

 

Ahmad Afif Mohd Faudzi1, Hirotaka Takano2 and Junichi Murata3  
1Faculty of Electric and Electronics Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia.  

2Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Fukui, Fukui, Japan. 
3Department of Electrical Engineering, Kyushu University, Fukuoka, Japan.  

afif@ump.edu.my 

 

 
Abstract—Reinforcement learning (RL) enables an agent to 

find a solution to a problem by interacting with the environment. 

However, the learning process always starts from scratch and 

possibly takes a long time. Here, knowledge transfer between 

tasks is considered. In this paper, we argue that an abstraction 

can improve the transfer learning. Modified learning vector 

quantization (LVQ) that can manipulate its network weights is 

proposed to perform an abstraction, an adaptation and a 

precaution. At first, the abstraction is performed by extracting 

an abstract policy out of a learned policy which is acquired 

through conventional RL method, Q-learning. The abstract 

policy then is used in a new task as prior information. Here, the 

adaptation or policy learning as well as new task's abstract 

policy generating are performed using only a single operation. 

Simulation results show that the representation of acquired 

abstract policy is interpretable, that the modified LVQ 

successfully performs policy learning as well as generates 

abstract policy and that the application of generalized common 

abstract policy produces better results by more effectively 

guiding the agent when learning a new task.  

 

Index Terms—Abstraction; Learning Vector Quantization; 

Reinforcement Learning; Transfer Learning. 

 

I. INTRODUCTION 

 

Reinforcement learning (RL) is among the great learning 

frameworks that trains an agent to find a solution to a problem 

by interacting with the environment [1]. The learning 

framework, which is based on iterative interactions with the 

environment by trial-and-error, enables RL to be applied to 

complicated or unknown environments. However, because it 

is based on exploration, it may also take a long time to obtain 

the proper solution [2-3]. The more complex and larger the 

environment is, the more exploration it requires, and it will 

consume more learning time or computation resources. 

Furthermore, if the environment changes, RL abandon past 

experiences and requires its agent to learn from scratch, 

which does not seem very intelligent nor efficient.   

Many studies have been done to improve RL methods that 

provide skills or prior knowledge to improve an agent's 

interaction with the environment such as Option [2] and 

Hierarchical RL [4], and they have been proven to enhance 

the learning process. Besides that, an agent can also benefit 

from their own past experiences, i.e., the knowledge obtained 

from solving earlier problems. Recent studies show that 

previous knowledge acquired from different but related 

problems can guide the agent better during the exploration of 

new environments, which is also known as transfer learning 

[5]. However, the fact that we do not know for sure whether 

the obtained knowledge may or may not work in unknown 

different environments is still needs to be considered [6-7]. In 

this paper, the authors improve the transfer learning by 

considering an abstraction, which is expected to help the 

designer by its simplifying ability. 

Abstraction is an operation that changes the representation 

of an object by removing less critical details while preserving 

desirable properties [8]. Rajendran and Bergamo proposed 

abstract policy learning and reused the abstract policy to 

improve initial performance of an RL learner in a similar new 

problem [9-10]. They showed good results in terms of the 

learning acceleration. However, they did not consider any 

other environments.  

In this research, the type of knowledge that is transferred 

between tasks is a policy. Q-learning method is used as based 

learning method and a modified learning vector quantization 

(LVQ) is proposed [11-13]. The proposed method considers 

not only the state values but also the action to be taken. In 

[11], the abstraction was performed on learned policy. The 

result showed that the abstraction was successful and the 

abstract policies represented by weight vectors were simple 

and easy to interpret. Furthermore in [12], the abstract 

policies obtained from previous similar environment were 

used to guide the initial exploration of the agent in a new 

environment. The result showed that the application of 

abstract policy from previous environment accelerated the 

learning in a new environment.  

In this paper, the authors proposed an adaptation process 

by extended the LVQ algorithm to be the leading player. 

Through the modified algorithm, the learning system enable 

the agent to reuse the previous task's abstract policies 

instantly without the requirement of any special operation. It 

is also expected to train the agent to adapt to the trained 

environment as well as generate a new abstract policy in a 

single operation. As the precaution for future unknown tasks, 

here, a common abstract policy, which is an extracted abstract 

policy from the similarities of two or more environments is 

introduced.  

A 3-D maze problem with a camera-mounted agent and 

several environments are considered in simulations. The 

results show that the agent manages to leverage the previous 

task's abstract policy for policy learning as well as directly 

generates abstract policies in a new environment using only 

proposed modified LVQ algorithm. The authors also find that 

the use of a common abstract policy presents better results 

than the use of policy or abstract policy from a specific 

environment. 

The rest of this paper is organized as follows. In the next 

section, two main algorithms that are used in this paper are 

explained. Then, Section 3 describes the issues and the 
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proposed solutions. It will be followed by Section 4 

explaining the methodology. In Section 5, simulation settings 

and results are described. Finally, Section 6 states the 

conclusions and future work. 

 

II. REINFORCEMENT LEARNING AND LEARNING VECTOR 

QUANTIZATION 

 

A. Reinforcement Learning and Q-learning 

 Reinforcement learning is a policy discovery through trial-

and-error exploration [1]. The learner has to interact with the 

environment and discover which actions return the highest 

rewards by performing them. The requirements are simple. 

The learner needs a goal, capable of sensing the state of the 

environment and able to take actions that affect the state. One 

of the commonly used methods in RL is Q-learning. 

In Q-learning, state-action pairs are evaluated, and the 

evaluation value is called Q-value [6]. At each step of time, 

an agent observes the vector of state st, then chooses and 

applies an action at. As the process moves to state st+1, the 

agent receives a reward or punishment rt+1. The goal of the 

training is to find the sequential order of actions, which 

maximizes the sum of the future reinforcements. The 

transition rule of Q-learning is a very simple formula:  
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where γ is a discount factor (0 ≤ γ < 1) and α is the learning 

rate (0 < α < 1). In this paper, the action at is selected based 

on ε-greedy. ε is reduced according to the progress of learning 

using an exponential function as the next equation.  

 

)( decayepisodee    
(2) 

 

where the episode is the current episode number, and decay 

is a parameter that determines the curve shape of the 

exponential function. With a probability of ε, the action is 

chosen randomly, otherwise, greedy action selection is done, 

i.e. the action with the maximum Q-value is selected. 

 

B. Learning Vector Quantization 

Learning vector quantization is a supervised learning 

algorithm. It is one of the appropriate algorithms to apply 

when a designer wants to classify a set of labeled input data 

[14]. As shown in Figure 1, the LVQ network consists of an 

input layer and an output layer. These layers are connected 

with each other. The input layer will receive an input 𝒙 =

[𝑥1 ⋯ 𝑥𝑛]𝑇 which belongs to category T. Each of the output 

layer nodes has a weight vector 𝒘𝑗 = [𝑤𝑗1 ⋯ 𝑤𝑗𝑛]
𝑇
 and a 

preassigned label 𝐶𝑗 as the output. During learning, the weight 

vectors are trained to provide the correct labels for all input 

data.  

The LVQ algorithm can be summarized as follows:  

1. Initialize the weight vectors 𝒘𝑗  , 𝑗 = 1, ⋯ , 𝑐 of the LVQ 

network, where c is the total number of the output 

nodes. 

2. Input the input vector x to the LVQ network.  

3. Calculate distance  𝑑𝑗 between the input vector x and 

weight vector 𝒘𝑗  as in Equation (3), 
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4. Find the minimum distance among,  𝑑𝑗  , 𝑗 = 1, ⋯ , 𝑐 and 

denote it by 𝑑𝑤𝑖𝑛. 

5. Update 𝒘𝑤𝑖𝑛 as in Equation (4), 
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where α is the learning rate (0 < α < 1).  

6. Go to step 2. 

 

 

 
Figure 1: Structure of LVQ network 

 

In steps 4 and 5, the LVQ network selects a weight vector 

closest to the given input vector and then compares the 

output’s category label of LVQ network with the correct 

category T. If they match, the selected weight vector is 

updated so that it approaches the input vector. Otherwise, the 

chosen weight vector is updated so that it moves away from 

the input vector.  

There are at least three important parameters that the 

the designer needs to decide for LVQ algorithm. The first one 

is how many weight vectors should be used, and the second 

is where the weight vectors should be initialized or what the 

initial values of weight vectors should be. The last one is 

how the learning process will be terminated. In this paper, 

LVQ algorithm is modified and used as an abstraction, an 

adaptation and a common abstract policy generation method.  

 

III. ISSUES AND SOLUTIONS 

 

Reinforcement learning enables the agent to learn a proper 

behavior through the trial-and-error mechanism, which is 

required in order to find the best actions that will return the 

highest rewards. However, the trial-and-error mechanism or 

the exploration may make the learning took a long time to 

provide the proper solution. Furthermore, when the task 

changes, RL requires its agent to learn from scratch, which 

does not seem very intelligent nor efficient. Here, the authors 

wish to alleviate the problem by transfer learning or 

specifically by taking advantage of the obtained knowledge 

from previous similar tasks.  

There are several issues possibly arise when we want to 

perform transfer learning. The first issue is, even the previous 

task's policy is obtained, and we do not know for sure that it 
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may work in the current task. The policy might be incorrect, 

and its representation might not be so appropriate to be 

reused. If the old environment is small, and we use a lookup 

table to represent the policy, perhaps we manage to interpret 

and understand the learned policy. However, when the 

environment is large and complicated, it will be difficult. On 

the other hand, the second issue that might arise is, there is 

also the possibility that the current or the new tasks are 

unknown or unpredicted. The transferred knowledge might 

not be perfect for the new tasks that are unknown or 

unpredicted.  

As shown in Figure 2 to treat the first issue, we proposed 

to extract an abstract policy out of the learned policy. The 

abstraction is expected to provide a simple and general 

representation that is interpretable so that we can understand 

the obtained policy.  In this paper, we assume that some of 

the similar states in the learned policy might correspond the 

same actions. Due to that assumption, the abstraction is done 

by classification of the state-action pairs into a small number 

of groups based on the continuity in the state space and paired 

actions. In order to realize that, LVQ algorithm, which is an 

appropriate algorithm for classifying a set of labeled input 

data is proposed as an abstraction method. In the previous 

research, the results showed that the representation of abstract 

policy was interpretable, and the reuse of previous task 

abstract policy to guide the exploration successfully 

accelerated the agent's learning [11-12].  

There are two possible approaches that can be considered 

when having unknown or unpredicted tasks. The first 

approach is an adaptation, which the system changes itself so 

that it can work well after the environment has actually 

changed. The other is to prepare the system so that it can work 

in all possible environments before the changes actually 

occur. In this paper, we consider both approaches and propose 

LVQ algorithm to realize them. For the adaptation, the 

conventional RL method may enable the agent to adapt to the 

environment. However, if we use the conventional RL, the 

obtained knowledge that was extracted in an abstract form 

cannot directly be used. Some special operations may require 

in order to take the advantage of the obtained knowledge. 

Furthermore, since the RL method only produces a policy, 

another abstraction process is required to generate a new 

abstract policy for a new task. On the other hand, as shown in 

Figure 2, the proposed LVQ algorithm can directly use the 

obtained knowledge and not only trains the agent to adapt to 

the environment or to learn the policy but also directly 

generate the new abstract policy in a single operation. For the 

preparation of the learning system before the environment 

actually changes, the authors introduce another type of prior 

information named common abstract policy. The advantage 

of the common abstract policy compared to a policy or an 

abstract policy that obtained from a single task is it has a 

higher generality, thus can support the learning agent better. 

 

IV. METHODOLOGY 

 

In this section, we explain how the proposed treatments 

work using an example and also about the detailed procedures 

of treatments. 

 

A. Abstraction 

Imagine a simple maze task built with an agent, a goal and 

several types of obstacles, e.g. rocks and trees. In this task, 

the agent is trained to move from an initial position to the goal 

by avoiding those obstacles using the shortest path. After the 

training by reinforcement learning has been completed, the 

agent acquired an optimal policy that guided it to move 

towards the goal by turning away from the obstacles. This 

policy is represented by a set of input data corresponding to 

each of  

 

 
 

Figure 2: The learning flow. First, an abstract policy is extracted from the 

learned policy. Second, the obtained abstract policy is used in another 

similar task, which the agent requires to learn policy and generate a new 
abstract policy. Finally, the generation of common abstract policy that 

generalizes the previous abstract policies. 
 

the several actions. In other words, the input data, which hold 

all states' information, are classified into several action 

classes. 

The abstraction is performed using LVQ algorithm by 

classifying the input data in each action class into several 

subclasses. For example, the input data belonging to the turn-

left class may be classified into two subclasses: one 

corresponds to the situation where the agent faces the tree and 

the other subclass corresponds to the situation where the 

agent faces the rock. The abstraction involves both of 

supervised and unsupervised learning. Since the correct class 

that each of the input data vectors belongs to is known, the 

supervised learning is to be used. On the other hand, we do 

not know which subclass each of them belongs to, and 

therefore, unsupervised learning must be performed at the 

same time.  

Each subclass is represented by a weight vector. After the 

learning completed, the weight vectors found by LVQ 

learning serve as representative data vectors. These 

representative data vectors are useful for the interpretation of 

the subclasses by human designers and will also be practical 

to classify the new data whose class and subclasses are 

unknown. In this research, these representative data vectors 

are used as an abstract policy. The abstract policy is expected 

to provide the same performance as the regular policy but has 

a fewer data. It is more efficient to perform transfer learning 

using the lesser data with the same performance. 

Furthermore, since the abstract policy is consisted by the 

representative data vectors, it might be useful for the agent to 

determine an action for unknown states in new tasks. 

As mentioned, the abstraction process will classify the 

input data into subclasses which are represented by weight 

vectors or nodes in LVQ algorithm. The information of the 

correct action will guide the learning system to classify 

correctly. However, which subclass each of the input data 

belongs to and how many nodes are required to classify all 

input data are unknown. Therefore, to define the number of 

nodes at the output layer beforehand which are required in the 
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original algorithm is difficult. Less number of nodes may end 

up with some unclassified input data and an over a number of 

nodes may end up with an inefficient result.  

In order to overcome the above difficulty and to be 

functioning as an abstraction method, we proposed a slight 

modification of the original LVQ algorithm. In this paper, the 

number of nodes is dynamically changed.  In the first episode, 

each class only has one node or one subclass. This number of 

nodes will be changed at the end of every episode until all the 

input data have been classified.  

 

B. Policy Learning 

Next, the agent is placed in a different but similar 

environment. The task is the same as the previous one and the 

obtained abstract policy from the previous task is provided. 

In the previous research [13], the transferred abstract policy 

was used as a guidance of exploration during the adaptation 

to a new environment through RL. In this paper, the agent 

adaptation is trained using LVQ algorithm and the transferred 

abstract policy is applied as agent's prior information. Instead 

of guiding the agent's exploration, the abstract policy is 

expected to improve the early stage of agent's exploitation. 

Since LVQ is used, the transferred abstract policy can directly 

use as the LVQ network's weight vectors, and after the 

learning completed, a new abstract policy can be expected.  

LVQ algorithm originally proposed for supervised 

learning. Here, however, there are no training data provided. 

During learning, in each state, the agent will perform the 

action associated with the winner node for the input vector 

and it cannot be known which the correct action is. Here, the 

modified LVQ will update only the weight vectors of selected 

actions that receive the reward. In addition, there are three 

operations involving the weight vectors, namely; weight 

vector movement, weight vector addition and weight vector 

deletion. The weight vector movement operation will move 

the existed weight vectors to maximize the rewards. The 

weight vector addition operation will add new weight vector 

when there are still input vectors that failed to be classified 

after several times of trial. Finally, the third operation will 

remove the weight vectors that are not being used to prevent 

them from affecting other classifications. 

The modified LVQ algorithm for the weight vector 

movement operation can be expressed by Equation (4).  

 

C. Policy Learning 

After the agent is trained in two similar but different tasks, 

two different policies are obtained. Since both environments 

are different but similar, there are three cases that can be 

assumed. The first case where both policies provide the same 

action for the same state in each task, i.e. the policy that 

guides the agent to move forward when the agent is one step 

in front of the goal. The second case is when the policies 

provide different actions for the same state in each task, e.g. 

when the agent is facing the same obstacles, but both tasks 

have the different optimal route solutions that require the 

agent move to different ways. The last case is when both 

policies only work on their own task. In this paper, the authors 

generate another abstract policy named as `common abstract 

policy' by extracting the similarities from both policies e.g. 

the first case policies. Since all task-specific policies that 

might provide the wrong action for the unknown task are not 

included, it is expected to be more reliable compared to 

previous task specific's abstract policies.  

The common abstract policy is generated using the LVQ 

algorithm. The procedure is quite simple and it requires only 

an abstract policy from one of the past-learned environments 

and a set of trained data that also represents the regular policy 

from other past environments. The procedure can be 

summaries as follows: 

Only the weight vectors from the nodes that have only 

`True' flags or both flags are selected to generate common 

abstract policy.  

 

V. SIMULATIONS 

 

In order to verify the validity of the proposed methods, 

maze problems with some obstacles were designed. As shown 

in Figure 3, there are three environments used in this paper. 

They are three-dimension grid environments and were built 

using the Google SketchUp software. The locations of the 

goal and the obstacles (water and boxes) in each environment 

were designed differently. In this paper, the agent's task is to 

avoid the obstacles while finding the shortest route from the 

initial positions to the goal.  

The agent has four possible states s in each coordination; 

facing north, east, west and south. As illustrated in Figure 4(a) 

and Figure 4(b), each state sensed by an image data captured 

by the camera, the distance between itself with the goal and 

the direction of the goal. Before the camera image is used as 

a part of state information, it is pre-processed to reduce the 

resolution to 4×3 pixels. There are 38 signals for each state; 

36 signals from the captured image, one signal that indicates 

the distance between the agent and the goal and one signal for 

indicating the direction of the goal. As shown in Figure 4(c), 

in every time step t, the agent can make an action a out of 

three possible actions, namely, ‘move forward in one grid’, 

‘turn right’, and ‘turn left’. If the agent takes an action 

towards the obstacles, the time step is counted, however, the 

agent stays in the same state. 

There are three stages of learning; an abstraction, an 

adaptation and common abstract policy generation.  

 

A. Abstraction 

In the first stage, before the simulation of abstract policy 

acquisition is done, the trained policy is generated. For that, 

the agent is trained in the environment A and Q-learning 

method is used. After the learning was completed, for the 

environment A, the learned policy consisting of 275 state-

action data was generated. Figure 5 shows a part of the 

learned policy that corresponds ‘turn right’ action. Next, the 

acquisition of abstract policy is performed using the proposed 

method, LVQ algorithm. The detailed parameters’ settings 

and the result can be referred at [11]. 

 

B. Adaptation 

In the second stage, the agent is placed in a different but 

similar environment named ‘Environment B’ as shown in 

Figure 3(b). The task has still remained the same where the 

agent needs to find the shortest path from an initial position 

to the goal.  

As shown in Figure 2, for the second stage only LVQ 

algorithm is used for policy learning as well as abstract policy 

generating. During the initialization process, the weight 

vectors that represent the ‘Abstract Policy A’ are used as the 

LVQ network’s initial weight vectors. The weight vectors 

then are updated after every episode finished. An episode is a 

period between the agent sets off the initial position until ends 

in a terminal state which is either the agent touches the goal 
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or the agent in time-out state. When the agent successfully 

touches the goal, the weight vectors of the LVQ output nodes 

activated along the path to the goal are updated by Equation 

(6-8). The learning rate α(k) is calculated by Equation (5) with 

α(0) = 0.001. 

 

  
 
Figure 3: Task environments. There is a goal (red) and two obstacles, water 

(blue) and boxes (black). Locations of the goal and a box are different for 

both environments. 

 

  
 

Figure 4: (a) The illustration of a state, 36 signals data from a three channels 
4×3 pixels RGB images that were pre-processed before used with the two 

additional signals. (b) Two additional signals for the input vector; the 

direction of the goal θ and the distance between the agent and the goal d. 
(c) Actions of the agent. 

The value of the reward, r(k)(t) depends on the agent time 

step Step(t) and rmax which is set as 100. TotalStep is the 

number of moves that the agent has made in episode k. When 

the agent failed to touch the goal within the step limit, which 

is set as 500 steps, the reward r(k)(t) and its sign s are set as 

0.05 and -1 respectively.  

Table 1 compares the results obtained from the simulation 

that was done using the modified LVQ algorithm to the 

results of a simulation that was done using both Q-learning 

and LVQ algorithm. It is apparent from this table that, 

compared to the former method, the number of abstract policy 

generated using only modified LVQ is almost double and the 

accumulative steps are 341 steps higher. These results show 

that through the proposed method, the agent successfully 

learned to complete the task regardless where it was 

initialized. However, the results also indicate that the agent 

could not find the optimal solutions for all initial positions. 

On the other hand, there are 275 different initial positions and 

255 different states in ‘Environment B’. Considering that, the 

average of exceeding steps for each start positions is less than 

two steps, which is acceptable. The result also shows that 

after learning, 255 input states were successfully classified 

into 174 subclasses or abstract policies.  

 
Table 1 

The accumulative steps from all initial position to the goal 

 

Learning method 
The number of  
weight vector 

Accumulative 
step 

Modified LVQ 174 1924 

Q-learning and LVQ 91 1583 

 

C. Common Abstract Policy Generation 

In the final stage, the abstract policy that is used for LVQ 

network’s weight vectors initialization is taken from 

‘Environment B’ and a set of trained data that is inputted into 

the LVQ network is taken from ‘Environment A’.  After the 

first and the second stages finished, as shown in Table 2, there 

are 275 input vectors from the ‘Environment A’ and 174 

weight vectors in ‘Abstract policy B’.  

As a result, Table 2 shows the number of weight vectors in 

‘Abstract Policy B’ that provide only the correct outputs, only 

the wrong outputs, both correct and wrong outputs and also 

the number of weight vectors that were not even chosen at all. 

As shown in Table 2, there are 44 weight vectors that 

outputted only correct actions, which will be used as the 

common abstract policy. The common abstract policy then is 

tested in both environments. 

 
Table 2 

Common abstract policy generation 

 

Training Data 
Input vector from Environment A 275 

Weight vector from Abstract Policy B 174 

Result: 

Weight vector in 

Abstract Policy B 
that outputted 

Correct output only 44 

Wrong output only  99 

Correct and Wrong Output 25 

Nothing 56 

 

Figure 5 shows the agent states in both environments that 

corresponded to three subclasses of the generated common 

abstract policy, namely Subclass 11, Subclass 19 and 

Subclass 31. As shown in Figure 8, we can see that for both 

environments, the Subclass 11 corresponded when the agent 

is facing the goal while the Subclass 19 and the Subclass 31 

corresponded when the agent is facing the south and the green 

wall respectively. 
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Figure 5: The agent states on both ‘Environment A’ and ‘Environment B’ 

that corresponded to the generated common abstract policy. 

 

Figure 6 shows the results of the performance of Q-

learning with the common abstract policy, compared to Q-

learning without past knowledge, and Q-learning with 

‘Abstract Policy A’ and ‘Abstract Policy B’ in environment 

C (Figure 4(c)). First of all, we can observe that Q-learning 

with past knowledge does present a better performance 

compared to the performance of an agent learning from 

scratch without using any kind of previous knowledge. In the 

earlier stage, the error is lower when the agent reuses previous 

knowledge. The application of the learned policy guides the 

agent exploration and thus led it to reach the goal faster. 

Without reuse, on the other hand, the agent takes more time 

to explore the environment. Then, if we compare the usage of 

common abstract policy to the usage of abstract policy from 

specific environments, a better performance of the usage of 

common abstract policy can be noticed, considering the 

performance at the final stage. This is especially due to the 

fact that the abstract policy from specific environments 

contains some policy that is environment specific. This 

abstract policy is not helpful and may even be 

disadvantageous to the agent. 

 

 
 
Figure 6: Performance results. Performance of Q-learning with the common 

abstract policy, compared to Q-learning without past knowledge, and Q-

learning with Abstract Policy A and Abstract Policy B in a new 

Environment C shown in Figure 4(c). Each point represents the average 
error value of 100 executions. 

VI. CONCLUSION 

 

This paper has investigated abstraction in order to improve 

the knowledge transfer between tasks. The type of knowledge 

that has been considered in this study is policy. In the first 

stage, LVQ algorithm was proposed as an abstraction method 

that was performed on learned policy and abstract policy was 

acquired. The result showed that the representation of abstract 

policy was interpretable. In the second stage, the agent was 

placed in a new similar task and LVQ algorithm was used for 

policy learning as well as abstract policy generation. The 

learning was successful in terms of the agent capability to 

move toward the goal regardless where it was initialized. 

However, the agent could not obtain the optimal solution for 

all the positions. In the final stage, after two simulations in 

different environments, the common abstract policy was 

generated. The common abstract policy generalizes the 

similarities between two environments' policies and was 

tested in the third environment. The result showed that Q-

learning that was guided by common abstract policy 

performed better compared to the others. A future study 

investigating more tasks and how to acquire the optimal 

solutions using only LVQ algorithm would be interesting. 
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