

 e-ISSN: 2289-8131 Vol. 10 No. 1-3 163

Transfer Learning Through Policy Abstraction

Using Learning Vector Quantization

Ahmad Afif Mohd Faudzi1, Hirotaka Takano2 and Junichi Murata3
1Faculty of Electric and Electronics Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia.

2Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Fukui, Fukui, Japan.
3Department of Electrical Engineering, Kyushu University, Fukuoka, Japan.

afif@ump.edu.my

Abstract—Reinforcement learning (RL) enables an agent to

find a solution to a problem by interacting with the environment.

However, the learning process always starts from scratch and

possibly takes a long time. Here, knowledge transfer between

tasks is considered. In this paper, we argue that an abstraction

can improve the transfer learning. Modified learning vector

quantization (LVQ) that can manipulate its network weights is

proposed to perform an abstraction, an adaptation and a

precaution. At first, the abstraction is performed by extracting

an abstract policy out of a learned policy which is acquired

through conventional RL method, Q-learning. The abstract

policy then is used in a new task as prior information. Here, the

adaptation or policy learning as well as new task's abstract

policy generating are performed using only a single operation.

Simulation results show that the representation of acquired

abstract policy is interpretable, that the modified LVQ

successfully performs policy learning as well as generates

abstract policy and that the application of generalized common

abstract policy produces better results by more effectively

guiding the agent when learning a new task.

Index Terms—Abstraction; Learning Vector Quantization;

Reinforcement Learning; Transfer Learning.

I. INTRODUCTION

Reinforcement learning (RL) is among the great learning

frameworks that trains an agent to find a solution to a problem

by interacting with the environment [1]. The learning

framework, which is based on iterative interactions with the

environment by trial-and-error, enables RL to be applied to

complicated or unknown environments. However, because it

is based on exploration, it may also take a long time to obtain

the proper solution [2-3]. The more complex and larger the

environment is, the more exploration it requires, and it will

consume more learning time or computation resources.

Furthermore, if the environment changes, RL abandon past

experiences and requires its agent to learn from scratch,

which does not seem very intelligent nor efficient.

Many studies have been done to improve RL methods that

provide skills or prior knowledge to improve an agent's

interaction with the environment such as Option [2] and

Hierarchical RL [4], and they have been proven to enhance

the learning process. Besides that, an agent can also benefit

from their own past experiences, i.e., the knowledge obtained

from solving earlier problems. Recent studies show that

previous knowledge acquired from different but related

problems can guide the agent better during the exploration of

new environments, which is also known as transfer learning

[5]. However, the fact that we do not know for sure whether

the obtained knowledge may or may not work in unknown

different environments is still needs to be considered [6-7]. In

this paper, the authors improve the transfer learning by

considering an abstraction, which is expected to help the

designer by its simplifying ability.

Abstraction is an operation that changes the representation

of an object by removing less critical details while preserving

desirable properties [8]. Rajendran and Bergamo proposed

abstract policy learning and reused the abstract policy to

improve initial performance of an RL learner in a similar new

problem [9-10]. They showed good results in terms of the

learning acceleration. However, they did not consider any

other environments.

In this research, the type of knowledge that is transferred

between tasks is a policy. Q-learning method is used as based

learning method and a modified learning vector quantization

(LVQ) is proposed [11-13]. The proposed method considers

not only the state values but also the action to be taken. In

[11], the abstraction was performed on learned policy. The

result showed that the abstraction was successful and the

abstract policies represented by weight vectors were simple

and easy to interpret. Furthermore in [12], the abstract

policies obtained from previous similar environment were

used to guide the initial exploration of the agent in a new

environment. The result showed that the application of

abstract policy from previous environment accelerated the

learning in a new environment.

In this paper, the authors proposed an adaptation process

by extended the LVQ algorithm to be the leading player.

Through the modified algorithm, the learning system enable

the agent to reuse the previous task's abstract policies

instantly without the requirement of any special operation. It

is also expected to train the agent to adapt to the trained

environment as well as generate a new abstract policy in a

single operation. As the precaution for future unknown tasks,

here, a common abstract policy, which is an extracted abstract

policy from the similarities of two or more environments is

introduced.

A 3-D maze problem with a camera-mounted agent and

several environments are considered in simulations. The

results show that the agent manages to leverage the previous

task's abstract policy for policy learning as well as directly

generates abstract policies in a new environment using only

proposed modified LVQ algorithm. The authors also find that

the use of a common abstract policy presents better results

than the use of policy or abstract policy from a specific

environment.

The rest of this paper is organized as follows. In the next

section, two main algorithms that are used in this paper are

explained. Then, Section 3 describes the issues and the

Journal of Telecommunication, Electronic and Computer Engineering

164 e-ISSN: 2289-8131 Vol. 10 No. 1-3

proposed solutions. It will be followed by Section 4

explaining the methodology. In Section 5, simulation settings

and results are described. Finally, Section 6 states the

conclusions and future work.

II. REINFORCEMENT LEARNING AND LEARNING VECTOR

QUANTIZATION

A. Reinforcement Learning and Q-learning

 Reinforcement learning is a policy discovery through trial-

and-error exploration [1]. The learner has to interact with the

environment and discover which actions return the highest

rewards by performing them. The requirements are simple.

The learner needs a goal, capable of sensing the state of the

environment and able to take actions that affect the state. One

of the commonly used methods in RL is Q-learning.

In Q-learning, state-action pairs are evaluated, and the

evaluation value is called Q-value [6]. At each step of time,

an agent observes the vector of state st, then chooses and

applies an action at. As the process moves to state st+1, the

agent receives a reward or punishment rt+1. The goal of the

training is to find the sequential order of actions, which

maximizes the sum of the future reinforcements. The

transition rule of Q-learning is a very simple formula:

)),(max(

),()1(),(

11 asQr

asQasQ

t
a

t

tttt

 (1)

where γ is a discount factor (0 ≤ γ < 1) and α is the learning

rate (0 < α < 1). In this paper, the action at is selected based

on ε-greedy. ε is reduced according to the progress of learning

using an exponential function as the next equation.

)(decayepisodee
(2)

where the episode is the current episode number, and decay

is a parameter that determines the curve shape of the

exponential function. With a probability of ε, the action is

chosen randomly, otherwise, greedy action selection is done,

i.e. the action with the maximum Q-value is selected.

B. Learning Vector Quantization

Learning vector quantization is a supervised learning

algorithm. It is one of the appropriate algorithms to apply

when a designer wants to classify a set of labeled input data

[14]. As shown in Figure 1, the LVQ network consists of an

input layer and an output layer. These layers are connected

with each other. The input layer will receive an input 𝒙 =

[𝑥1 ⋯ 𝑥𝑛]𝑇 which belongs to category T. Each of the output

layer nodes has a weight vector 𝒘𝑗 = [𝑤𝑗1 ⋯ 𝑤𝑗𝑛]
𝑇
 and a

preassigned label 𝐶𝑗 as the output. During learning, the weight

vectors are trained to provide the correct labels for all input

data.

The LVQ algorithm can be summarized as follows:

1. Initialize the weight vectors 𝒘𝑗 , 𝑗 = 1, ⋯ , 𝑐 of the LVQ

network, where c is the total number of the output

nodes.

2. Input the input vector x to the LVQ network.

3. Calculate distance 𝑑𝑗 between the input vector x and

weight vector 𝒘𝑗 as in Equation (3),

.)(
1

2

n

i

jiij wxd (3)

4. Find the minimum distance among, 𝑑𝑗 , 𝑗 = 1, ⋯ , 𝑐 and

denote it by 𝑑𝑤𝑖𝑛.

5. Update 𝒘𝑤𝑖𝑛 as in Equation (4),

)]()()[()()1(ttttt winwinwin wxww ,

if TCwin ,

)]()()[()()1(ttttt winwinwin wxww ,

if TCwin ,

(4)

where α is the learning rate (0 < α < 1).

6. Go to step 2.

Figure 1: Structure of LVQ network

In steps 4 and 5, the LVQ network selects a weight vector

closest to the given input vector and then compares the

output’s category label of LVQ network with the correct

category T. If they match, the selected weight vector is

updated so that it approaches the input vector. Otherwise, the

chosen weight vector is updated so that it moves away from

the input vector.

There are at least three important parameters that the

the designer needs to decide for LVQ algorithm. The first one

is how many weight vectors should be used, and the second

is where the weight vectors should be initialized or what the

initial values of weight vectors should be. The last one is

how the learning process will be terminated. In this paper,

LVQ algorithm is modified and used as an abstraction, an

adaptation and a common abstract policy generation method.

III. ISSUES AND SOLUTIONS

Reinforcement learning enables the agent to learn a proper

behavior through the trial-and-error mechanism, which is

required in order to find the best actions that will return the

highest rewards. However, the trial-and-error mechanism or

the exploration may make the learning took a long time to

provide the proper solution. Furthermore, when the task

changes, RL requires its agent to learn from scratch, which

does not seem very intelligent nor efficient. Here, the authors

wish to alleviate the problem by transfer learning or

specifically by taking advantage of the obtained knowledge

from previous similar tasks.

There are several issues possibly arise when we want to

perform transfer learning. The first issue is, even the previous

task's policy is obtained, and we do not know for sure that it

Transfer Learning Through Abstraction Using Learning Vector Quantization

 e-ISSN: 2289-8131 Vol. 10 No. 1-3 165

may work in the current task. The policy might be incorrect,

and its representation might not be so appropriate to be

reused. If the old environment is small, and we use a lookup

table to represent the policy, perhaps we manage to interpret

and understand the learned policy. However, when the

environment is large and complicated, it will be difficult. On

the other hand, the second issue that might arise is, there is

also the possibility that the current or the new tasks are

unknown or unpredicted. The transferred knowledge might

not be perfect for the new tasks that are unknown or

unpredicted.

As shown in Figure 2 to treat the first issue, we proposed

to extract an abstract policy out of the learned policy. The

abstraction is expected to provide a simple and general

representation that is interpretable so that we can understand

the obtained policy. In this paper, we assume that some of

the similar states in the learned policy might correspond the

same actions. Due to that assumption, the abstraction is done

by classification of the state-action pairs into a small number

of groups based on the continuity in the state space and paired

actions. In order to realize that, LVQ algorithm, which is an

appropriate algorithm for classifying a set of labeled input

data is proposed as an abstraction method. In the previous

research, the results showed that the representation of abstract

policy was interpretable, and the reuse of previous task

abstract policy to guide the exploration successfully

accelerated the agent's learning [11-12].

There are two possible approaches that can be considered

when having unknown or unpredicted tasks. The first

approach is an adaptation, which the system changes itself so

that it can work well after the environment has actually

changed. The other is to prepare the system so that it can work

in all possible environments before the changes actually

occur. In this paper, we consider both approaches and propose

LVQ algorithm to realize them. For the adaptation, the

conventional RL method may enable the agent to adapt to the

environment. However, if we use the conventional RL, the

obtained knowledge that was extracted in an abstract form

cannot directly be used. Some special operations may require

in order to take the advantage of the obtained knowledge.

Furthermore, since the RL method only produces a policy,

another abstraction process is required to generate a new

abstract policy for a new task. On the other hand, as shown in

Figure 2, the proposed LVQ algorithm can directly use the

obtained knowledge and not only trains the agent to adapt to

the environment or to learn the policy but also directly

generate the new abstract policy in a single operation. For the

preparation of the learning system before the environment

actually changes, the authors introduce another type of prior

information named common abstract policy. The advantage

of the common abstract policy compared to a policy or an

abstract policy that obtained from a single task is it has a

higher generality, thus can support the learning agent better.

IV. METHODOLOGY

In this section, we explain how the proposed treatments

work using an example and also about the detailed procedures

of treatments.

A. Abstraction

Imagine a simple maze task built with an agent, a goal and

several types of obstacles, e.g. rocks and trees. In this task,

the agent is trained to move from an initial position to the goal

by avoiding those obstacles using the shortest path. After the

training by reinforcement learning has been completed, the

agent acquired an optimal policy that guided it to move

towards the goal by turning away from the obstacles. This

policy is represented by a set of input data corresponding to

each of

Figure 2: The learning flow. First, an abstract policy is extracted from the

learned policy. Second, the obtained abstract policy is used in another

similar task, which the agent requires to learn policy and generate a new
abstract policy. Finally, the generation of common abstract policy that

generalizes the previous abstract policies.

the several actions. In other words, the input data, which hold

all states' information, are classified into several action

classes.

The abstraction is performed using LVQ algorithm by

classifying the input data in each action class into several

subclasses. For example, the input data belonging to the turn-

left class may be classified into two subclasses: one

corresponds to the situation where the agent faces the tree and

the other subclass corresponds to the situation where the

agent faces the rock. The abstraction involves both of

supervised and unsupervised learning. Since the correct class

that each of the input data vectors belongs to is known, the

supervised learning is to be used. On the other hand, we do

not know which subclass each of them belongs to, and

therefore, unsupervised learning must be performed at the

same time.

Each subclass is represented by a weight vector. After the

learning completed, the weight vectors found by LVQ

learning serve as representative data vectors. These

representative data vectors are useful for the interpretation of

the subclasses by human designers and will also be practical

to classify the new data whose class and subclasses are

unknown. In this research, these representative data vectors

are used as an abstract policy. The abstract policy is expected

to provide the same performance as the regular policy but has

a fewer data. It is more efficient to perform transfer learning

using the lesser data with the same performance.

Furthermore, since the abstract policy is consisted by the

representative data vectors, it might be useful for the agent to

determine an action for unknown states in new tasks.

As mentioned, the abstraction process will classify the

input data into subclasses which are represented by weight

vectors or nodes in LVQ algorithm. The information of the

correct action will guide the learning system to classify

correctly. However, which subclass each of the input data

belongs to and how many nodes are required to classify all

input data are unknown. Therefore, to define the number of

nodes at the output layer beforehand which are required in the

Journal of Telecommunication, Electronic and Computer Engineering

166 e-ISSN: 2289-8131 Vol. 10 No. 1-3

original algorithm is difficult. Less number of nodes may end

up with some unclassified input data and an over a number of

nodes may end up with an inefficient result.

In order to overcome the above difficulty and to be

functioning as an abstraction method, we proposed a slight

modification of the original LVQ algorithm. In this paper, the

number of nodes is dynamically changed. In the first episode,

each class only has one node or one subclass. This number of

nodes will be changed at the end of every episode until all the

input data have been classified.

B. Policy Learning

Next, the agent is placed in a different but similar

environment. The task is the same as the previous one and the

obtained abstract policy from the previous task is provided.

In the previous research [13], the transferred abstract policy

was used as a guidance of exploration during the adaptation

to a new environment through RL. In this paper, the agent

adaptation is trained using LVQ algorithm and the transferred

abstract policy is applied as agent's prior information. Instead

of guiding the agent's exploration, the abstract policy is

expected to improve the early stage of agent's exploitation.

Since LVQ is used, the transferred abstract policy can directly

use as the LVQ network's weight vectors, and after the

learning completed, a new abstract policy can be expected.

LVQ algorithm originally proposed for supervised

learning. Here, however, there are no training data provided.

During learning, in each state, the agent will perform the

action associated with the winner node for the input vector

and it cannot be known which the correct action is. Here, the

modified LVQ will update only the weight vectors of selected

actions that receive the reward. In addition, there are three

operations involving the weight vectors, namely; weight

vector movement, weight vector addition and weight vector

deletion. The weight vector movement operation will move

the existed weight vectors to maximize the rewards. The

weight vector addition operation will add new weight vector

when there are still input vectors that failed to be classified

after several times of trial. Finally, the third operation will

remove the weight vectors that are not being used to prevent

them from affecting other classifications.

The modified LVQ algorithm for the weight vector

movement operation can be expressed by Equation (4).

C. Policy Learning

After the agent is trained in two similar but different tasks,

two different policies are obtained. Since both environments

are different but similar, there are three cases that can be

assumed. The first case where both policies provide the same

action for the same state in each task, i.e. the policy that

guides the agent to move forward when the agent is one step

in front of the goal. The second case is when the policies

provide different actions for the same state in each task, e.g.

when the agent is facing the same obstacles, but both tasks

have the different optimal route solutions that require the

agent move to different ways. The last case is when both

policies only work on their own task. In this paper, the authors

generate another abstract policy named as `common abstract

policy' by extracting the similarities from both policies e.g.

the first case policies. Since all task-specific policies that

might provide the wrong action for the unknown task are not

included, it is expected to be more reliable compared to

previous task specific's abstract policies.

The common abstract policy is generated using the LVQ

algorithm. The procedure is quite simple and it requires only

an abstract policy from one of the past-learned environments

and a set of trained data that also represents the regular policy

from other past environments. The procedure can be

summaries as follows:

Only the weight vectors from the nodes that have only

`True' flags or both flags are selected to generate common

abstract policy.

V. SIMULATIONS

In order to verify the validity of the proposed methods,

maze problems with some obstacles were designed. As shown

in Figure 3, there are three environments used in this paper.

They are three-dimension grid environments and were built

using the Google SketchUp software. The locations of the

goal and the obstacles (water and boxes) in each environment

were designed differently. In this paper, the agent's task is to

avoid the obstacles while finding the shortest route from the

initial positions to the goal.

The agent has four possible states s in each coordination;

facing north, east, west and south. As illustrated in Figure 4(a)

and Figure 4(b), each state sensed by an image data captured

by the camera, the distance between itself with the goal and

the direction of the goal. Before the camera image is used as

a part of state information, it is pre-processed to reduce the

resolution to 4×3 pixels. There are 38 signals for each state;

36 signals from the captured image, one signal that indicates

the distance between the agent and the goal and one signal for

indicating the direction of the goal. As shown in Figure 4(c),

in every time step t, the agent can make an action a out of

three possible actions, namely, ‘move forward in one grid’,

‘turn right’, and ‘turn left’. If the agent takes an action

towards the obstacles, the time step is counted, however, the

agent stays in the same state.

There are three stages of learning; an abstraction, an

adaptation and common abstract policy generation.

A. Abstraction

In the first stage, before the simulation of abstract policy

acquisition is done, the trained policy is generated. For that,

the agent is trained in the environment A and Q-learning

method is used. After the learning was completed, for the

environment A, the learned policy consisting of 275 state-

action data was generated. Figure 5 shows a part of the

learned policy that corresponds ‘turn right’ action. Next, the

acquisition of abstract policy is performed using the proposed

method, LVQ algorithm. The detailed parameters’ settings

and the result can be referred at [11].

B. Adaptation

In the second stage, the agent is placed in a different but

similar environment named ‘Environment B’ as shown in

Figure 3(b). The task has still remained the same where the

agent needs to find the shortest path from an initial position

to the goal.

As shown in Figure 2, for the second stage only LVQ

algorithm is used for policy learning as well as abstract policy

generating. During the initialization process, the weight

vectors that represent the ‘Abstract Policy A’ are used as the

LVQ network’s initial weight vectors. The weight vectors

then are updated after every episode finished. An episode is a

period between the agent sets off the initial position until ends

in a terminal state which is either the agent touches the goal

Transfer Learning Through Abstraction Using Learning Vector Quantization

 e-ISSN: 2289-8131 Vol. 10 No. 1-3 167

or the agent in time-out state. When the agent successfully

touches the goal, the weight vectors of the LVQ output nodes

activated along the path to the goal are updated by Equation

(6-8). The learning rate α(k) is calculated by Equation (5) with

α(0) = 0.001.

Figure 3: Task environments. There is a goal (red) and two obstacles, water

(blue) and boxes (black). Locations of the goal and a box are different for

both environments.

Figure 4: (a) The illustration of a state, 36 signals data from a three channels
4×3 pixels RGB images that were pre-processed before used with the two

additional signals. (b) Two additional signals for the input vector; the

direction of the goal θ and the distance between the agent and the goal d.
(c) Actions of the agent.

The value of the reward, r(k)(t) depends on the agent time

step Step(t) and rmax which is set as 100. TotalStep is the

number of moves that the agent has made in episode k. When

the agent failed to touch the goal within the step limit, which

is set as 500 steps, the reward r(k)(t) and its sign s are set as

0.05 and -1 respectively.

Table 1 compares the results obtained from the simulation

that was done using the modified LVQ algorithm to the

results of a simulation that was done using both Q-learning

and LVQ algorithm. It is apparent from this table that,

compared to the former method, the number of abstract policy

generated using only modified LVQ is almost double and the

accumulative steps are 341 steps higher. These results show

that through the proposed method, the agent successfully

learned to complete the task regardless where it was

initialized. However, the results also indicate that the agent

could not find the optimal solutions for all initial positions.

On the other hand, there are 275 different initial positions and

255 different states in ‘Environment B’. Considering that, the

average of exceeding steps for each start positions is less than

two steps, which is acceptable. The result also shows that

after learning, 255 input states were successfully classified

into 174 subclasses or abstract policies.

Table 1

The accumulative steps from all initial position to the goal

Learning method
The number of
weight vector

Accumulative
step

Modified LVQ 174 1924

Q-learning and LVQ 91 1583

C. Common Abstract Policy Generation

In the final stage, the abstract policy that is used for LVQ

network’s weight vectors initialization is taken from

‘Environment B’ and a set of trained data that is inputted into

the LVQ network is taken from ‘Environment A’. After the

first and the second stages finished, as shown in Table 2, there

are 275 input vectors from the ‘Environment A’ and 174

weight vectors in ‘Abstract policy B’.

As a result, Table 2 shows the number of weight vectors in

‘Abstract Policy B’ that provide only the correct outputs, only

the wrong outputs, both correct and wrong outputs and also

the number of weight vectors that were not even chosen at all.

As shown in Table 2, there are 44 weight vectors that

outputted only correct actions, which will be used as the

common abstract policy. The common abstract policy then is

tested in both environments.

Table 2

Common abstract policy generation

Training Data
Input vector from Environment A 275

Weight vector from Abstract Policy B 174

Result:

Weight vector in

Abstract Policy B
that outputted

Correct output only 44

Wrong output only 99

Correct and Wrong Output 25

Nothing 56

Figure 5 shows the agent states in both environments that

corresponded to three subclasses of the generated common

abstract policy, namely Subclass 11, Subclass 19 and

Subclass 31. As shown in Figure 8, we can see that for both

environments, the Subclass 11 corresponded when the agent

is facing the goal while the Subclass 19 and the Subclass 31

corresponded when the agent is facing the south and the green

wall respectively.

Journal of Telecommunication, Electronic and Computer Engineering

168 e-ISSN: 2289-8131 Vol. 10 No. 1-3

Figure 5: The agent states on both ‘Environment A’ and ‘Environment B’

that corresponded to the generated common abstract policy.

Figure 6 shows the results of the performance of Q-

learning with the common abstract policy, compared to Q-

learning without past knowledge, and Q-learning with

‘Abstract Policy A’ and ‘Abstract Policy B’ in environment

C (Figure 4(c)). First of all, we can observe that Q-learning

with past knowledge does present a better performance

compared to the performance of an agent learning from

scratch without using any kind of previous knowledge. In the

earlier stage, the error is lower when the agent reuses previous

knowledge. The application of the learned policy guides the

agent exploration and thus led it to reach the goal faster.

Without reuse, on the other hand, the agent takes more time

to explore the environment. Then, if we compare the usage of

common abstract policy to the usage of abstract policy from

specific environments, a better performance of the usage of

common abstract policy can be noticed, considering the

performance at the final stage. This is especially due to the

fact that the abstract policy from specific environments

contains some policy that is environment specific. This

abstract policy is not helpful and may even be

disadvantageous to the agent.

Figure 6: Performance results. Performance of Q-learning with the common

abstract policy, compared to Q-learning without past knowledge, and Q-

learning with Abstract Policy A and Abstract Policy B in a new

Environment C shown in Figure 4(c). Each point represents the average
error value of 100 executions.

VI. CONCLUSION

This paper has investigated abstraction in order to improve

the knowledge transfer between tasks. The type of knowledge

that has been considered in this study is policy. In the first

stage, LVQ algorithm was proposed as an abstraction method

that was performed on learned policy and abstract policy was

acquired. The result showed that the representation of abstract

policy was interpretable. In the second stage, the agent was

placed in a new similar task and LVQ algorithm was used for

policy learning as well as abstract policy generation. The

learning was successful in terms of the agent capability to

move toward the goal regardless where it was initialized.

However, the agent could not obtain the optimal solution for

all the positions. In the final stage, after two simulations in

different environments, the common abstract policy was

generated. The common abstract policy generalizes the

similarities between two environments' policies and was

tested in the third environment. The result showed that Q-

learning that was guided by common abstract policy

performed better compared to the others. A future study

investigating more tasks and how to acquire the optimal

solutions using only LVQ algorithm would be interesting.

ACKNOWLEDGMENT

The research was supported by Research Grant

RDU1703140 from Research and Innovation Department,

Universiti Malaysia Pahang. Special thanks to all members of

Murata Laboratory, Kyushu University for all supports.

REFERENCES

[1] R. S. Sutton and A. G. Barto, “Reinforcement learning: An

introduction”, MIT Press, 1998.
[2] Terashima, K., Takano, H., and Murata, J., “Acceleration of

Reinforcement Learning with Incomplete Prior Information”, Journal

of Advanced Computational Intelligence and Intelligent Informatics,
17(5), 721-730, 2013.

[3] Koga, M. L., Freire, V., and Costa, A. H. R., “Stochastic abstract

policies: generalizing knowledge to improve reinforcement learning”,
IEEE Transactions on Cybernetics, 45(1), 77-88, 2015.

[4] Yuchen Fu, Quan Liu, Xionghong Ling, and Zhiming Cui, “A Reward
Optimization Method Based on Action Subrewards in Hierarchical

Reinforcement Learning”, The Scientific World Journal, vol. 2014,

Article ID 120760, pp. 1-6, 2014.
[5] Taylor, M. E., and Stone, P., “Transfer Learning for Reinforcement

Learning Domains: A Survey”, Journal of Machine Learning

Research, 10, 1633-1685, 2009.
[6] Watkins, C. J., and Dayan, P., “Q-learning”, Machine Learning, Vol.

8, pp. 279-292, 1992.

[7] Carroll, J. L., and Peterson, T., “Fixed vs. dynamic sub-transfer in
reinforcement learning”, In ICMLA, pp. 3-8, 2002.

[8] Ponsen, M., Taylor, M., and Tuyls, K., “Abstraction and generalization

in reinforcement learning: A summary and framework”, Adaptive and
Learning Agents, 2010, pp. 1-32.

[9] Rajendran, S., and Huber, M., “Learning to generalize and reuse skills

using approximate partial policy homomorphisms”, In Systems, Man

and Cybernetics, 2009. SMC 2009. IEEE International Conference on,

pp.2239-2244.

[10] Y. Bergamo, T. Matos, V. da Silva, and A. Costa, “Accelerating
reinforcement learning by reusing abstract policies”, VIII Encontro

Nacional de Inteligncia Artificial (ENIA 2011), 2011, pp. 1793-1798.

[11] A. A. M. Faudzi, H. Takano, and J. Murata, “A study on visual
abstraction for reinforcement learning problem using Learning Vector

Quantization”, SICE Annual Conference (SICE), 2013 Proceedings of,

pp. 1326-1331, 2013.
[12] A. A. M. Faudzi, H. Takano, and J. Murata, “A study on abstract policy

for acceleration of reinforcement learning”, SICE Annual Conference

(SICE), 2014 Proceedings of, pp. 1793-1798, 2014.
[13] T. Kohonen, “Learning Vector Quantization in Self-Organizing Maps

SE - 6”, Springer Berlin Heidelberg, Vol. 30, pp. 245-261, 2001.

