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Abstract. Current stringent rules for pollution release to the atmosphere have led to 

researchers worldwide developing methods to increase the efficiency of combustion. In order 

to reduce experimental cost, accurate modelling and simulation is a very critical step. One 

combustion model is Conditional Moment Closure (CMC). This paper reports a preliminary 

result implementing the CMC model using a finite difference method. The Taylor series 

expansion was utilised to determine the error term for the discretization. FORTRAN code was 

used to simulate the discretized partial differential equation. From the simulation result, it is 

found that the explicit method is simple but less accurate than the implicit method. 

1. Introduction 

The desire to improve combustion efficiency with lower emissions has led to an increased interest in 

combustion modelling and research. Turbulent combustion is divided into two classes depending on 

when the fuel is mixed with the oxidizer: premixed and non-premixed. For non-premixed combustion, 

there are types of modelling methods for the mixing process: probability density function (PDF) based 

model [1-3], flamelet model [4-7], fast chemistry limit model [8], and mapping closure model [9, 10]. 

Besides those models, there are a few other developments such as conditional moment closure (CMC) 

by Klimenko and Bilger [11-13] and multiple mapping conditioning (MMC) by Klimenko and Pope 

[14], with further developments [15-18] for the mixing process.  

The CMC concept is a model for turbulent combustion processes describing the transport of 

reactive scalars in conserved scalar spaces. The key innovation in the introduction of CMC was to take 

into account conditional averages in the combustion modelling because the chemical source term is 

not a function of unconditional averages, which are used in conventional modeling. Ternat et al [19] 

computed stable solutions using two finite difference methods, namely the Euler method and the 

Crank–Nicolson method, to advance the solution of the heat equation in time. Clarke et al [20] used 

Direct Numerical Simulation (DNS) results to model the parameters of CMC for combustion systems 

with droplets. This is a complicated process because of the interaction of the evaporating liquid with 

the gaseous phase; the usage of a spark to evaporate the fuel and ignite the mixture exacerbates this 

complexity in comparison with auto ignition. 

A mixing model is required to close the molecular diffusion term in the PDF transport equation [1], 

which is the last term in equation (1) and contains the molecular diffusion flux vector (Jik): 



 

International Conference of Mechanical Engineering Research (ICMER) 2011  

5-7 Dec, Malaysia, Paper ID: ICMER2011-151 

   

  
 

     

   
 

     

   
  

 

   
     

        
 

   
 
 

 
 
     

   
                                              (1) 

 

Mixing plays a crucial role in the non-premixed combustion process; a number of mixing models 

have been developed. The Coalescence and Dispersion process was modelled by Curl in 1963 [21] and 

Levenspiel and Spielman in 1965 [22] and is often called “Curl's model”.  The governing equation for 

Curl's model is shown in equation (2). The left part of the equation is the particle composition before 

mixing. This particle then Coalescences with another particle and mixing occurs. The mixing process 

can be referred to at the middle part of equation (2) and then this mixed particle will be dispersed as 

shown in the last part of equation (2). 
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Here     is the composition of species A for particle 1,   
  is the new composition of species A and 

        is a particle which consists of species A and B. The Curl's model was modified by Janicka et. 

al [23] and Dopazo [24] in 1979. This model was called modified Curl's (MC) model (equations (3) 

and (4)) where β can take any value from 0 to 1 and can be a random variable. If β = 0, then no mixing 

occurs, whilst β = 1 reproduces Curl's model. 
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Here    and    is the composition of particles i and j, t is time and δt is the time interval. 

The weakness of the MC model is that this mixing process does not enforce the requirement that 

only particles that are close to each other are allowed to mix and interact with each other. This issue 

was solved by the Euclidean Minimum Spanning Tree (EMST) model [25] whereby particles that mix 

are close together in composition space as shown in equations (5) and (6). In these equations, there are 

two new constants introduced where d is determined so that the desired amount of mixing is obtained 

and Pb is the position of particle in the EMST branch. Particles near to the centre will have higher Pb 

values. 
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Another mixing model is the interaction by exchange with the mean (IEM) model [26] where the 

composition of all particles in a cell are moved a small distance toward the mean composition using a 

characteristic mixing timescale. The IEM equation is shown in equation (7) where    is the Favre 

mean-composition vector at the particle’s location and    is the turbulence time scale. The scalar 

mixing time scale    in equation (7) is often modelled as proportional to    as in equation (8). 
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The mixing models just described are either non-local [21-24] or over-local [25], thereby producing 

imperfect combustion modelling processes. Recently Wandel [27] has proposed a new mixing model 

which randomizes the particle interaction in a local manner. The proposed model is the Stochastic 

Particle Diffusion Length (SPDL) [27] model, which is based upon the practical localness of the 

random inter-particle distance [28]. 
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Combustion processes are very complex especially because the chemical reactions between 

chemical species involved in burning fuel (gas, liquid or solid) are highly non-linear functions of 

temperature and species concentration. Significant errors are produced when a computational fluid 

dynamics (CFD) code only solves the Reynolds Averaged Navier-Stokes (RANS) model as written in 

equation (9), which involves averaging the source terms. All terms are averaged and the models work 

reasonably well when solving    for velocity but not for chemical source term. 
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These models are inaccurate and produce errors by ignoring the correlation between the source 

term variables, which are generally significant, compared to the corresponding averages. These errors 

were overcome by the CMC model using the conditional averages method. It takes the average of the 

variables for a specified value of the mixture fraction and effectively averages over a smaller region of 

space. Compare to the RANS method, CMC is more accurate at the cost of more complex simulations 

that require more computational time. The chemical source term       can be calculated using 

equation (10) and the reaction rate is obtained by using equation (11). The Arrhenius equation [16] in 

equation (12) is used to determine the reaction rate constant. The chemical source term, reaction rate 

and reaction rate constant can be written as: 
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with the rate of progress variable    the net strength of reaction j in the forward direction and    is the 

mean molecular weight,   is density,    is the activation energy, A and   are Arrhenius constants, R is 

the ideal gas constant, and T is temperature. The CMC equation for two-phase homogenous systems is 

shown in equation (13): 
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In this paper we discretized the CMC equation using the Taylor series expansion method. 

FORTRAN code was used to run a simulation and produce results. 

 

2.0 Taylor Expansion 

Implicit finite difference relations have been derived by many mathematicians and physicists with 

various methods [29-41]. Most of them claim that all the implicit formulas can be derived from a 

Taylor series expansion. The Taylor series expansion is a good basis for studying numerical methods 

since it provides a means to predict a function’s value at one point in terms of the function’s value and 

derivatives at another point. In particular, the theorem states that any smooth function can be 

approximated as a polynomial [41]. There are many different types of numerical differentiation 

formulations, depending on the number of points, direction of the formula and the required derivative 

order [42]. The Taylor expansion is a useful method to discretize partial differential equations to 

minimize and accurately predict the value of the error term. The expansions for values for    and     

which are to the right and to the left of     respectively are shown below up to the 7
th
-order derivatives 

as equations (14) and (15). 
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(15) 

 

We assume     is constant, then    and    become 
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Rearrangement of equations (16) and (17) becomes the first order derivatives at    as below 

(equations (18), (19) and (20)). Equation (16) is used to obtain the forward difference method (which 

calculates   
  

  
 
  

 based on forward movement from     to   ): 

 
  

  
 

       

  
 

    

  

   

    
     

  

   

    
     

  

   

    
     

  

   

    
     

  

   

    
     

  

   

                             (18) 

 

Equation (17) is used to obtain the backward difference method, which calculates  
  

  
 
  

 based on 

backward movement from     to    . 
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By taking the difference between equations (16) and (17), the central difference method is derived 

which calculates   
  

  
 
  

 based on the domain between    and     
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with leading error term of 
     

  

   

   . This equation (20) is a second-order accurate method: O     . Since 

the differences actually evaluate the derivative at the midpoint of the finite difference, equation (20) 

estimates the derivative at   , while equation (18) and (19) estimate the derivative either side of   . 

Using central difference derivative, we can obtain 
   

   , as shown in equation (21). The first term in 

equation (21) can be re-arranged as equation (22) to show that this is simply a central difference of the 

first derivative. 
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The leading error term is 
     

   

   

   , so this is a second-order accurate method: O     . The first-order 

derivative using the fourth-order Taylor expansion scheme is below, for the difference between    and 

   : 
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with leading error term of 
     

  

   

   . This is a fourth-order accurate method: O      and can be 

summarized as equation (24) to show that it is a weighted average of the “near” and “far” central 

differences: 
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The second-order derivative for the fourth-order Taylor expansion scheme is equation (25): 
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with leading error term of 
     

  

   

   
, so this is a fourth-order accurate method: O        This can be 

summarized as equation (26): 
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The third-order derivative for the second-order Taylor expansion scheme is shown as equation (27): 
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with leading error term of  
     

 

   

   , so this is a second-order accurate method: O     . 

Assuming that there is a uniform spacing of   , using notation that      
   

   , for the Taylor series 

expansion, central difference derivatives can be summarized as equation (28): 

 

              
     

 

  
     

 

                                                                (28) 

 

Forward difference derivatives can be written as equation (29): 

 

              
     
                                                                    (29) 

 

Backward difference derivatives can be written as equation (30): 

 

               
                                                                       (30) 

 

where n is the number of points (y-2,y-1,y0,y1,y2 is equal to five points), ET is the leading error term and 

z is the coefficient of y for each point i. 

 

3.0 Numerical Method 

The finite difference schemes, as agreed by most of the scientific community, were first used by Euler 

(1707-1783) [43] to find an approximate solution of a differential equation. It was invented prior to 

boundary element methods (BEM), finite element methods (FEM), spectral methods, and 

discontinuous spectral element methods [44]. FDM is still relevant and remain competitive as a 

discretization method for use in many applications and can be used to solve problems with simple and 

complex geometry, such as fluid flows and gas reaction [45,46]. The Finite difference method (FDM) 

is a numerical method for approximating the solutions to partial differential equations by using finite 

difference equations to approximate derivatives based on the properties of Taylor expansions and on 
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the straightforward application of the definition of derivatives [47]. The objectives are to transform the 

calculus problem to algebra as from a continuous equation to a discrete equation. The discretization 

process is a mathematical process that divides the continuous physical domain into a discrete finite 

difference grid and then approximates each individual partial derivative in the partial differential 

equation.  Using the Taylor expansion method, a partial differential equation was discretized in order 

to transform it to FORTRAN code. From the CMC equation, to study the discretization and code it in 

FORTRAN, simplifications of the CMC equation were used: the conditional chemical source term 
        and conditional generation due to droplet evaporation term         were not considered. So the 

homogeneous and passive CMC is equation (31): 

 
      

  
      

       

                                                                            (31) 

 

In this equation, the conditional mass fraction quantity       can be considered as “Y is a function 

of Z” (written as y(Z)) and conditional scalar dissipation       is expressed as “N is a function of Z” 

(written as N(Z)). After summarizing all the assumption, the CMC equation becomes equation (32): 
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The Taylor expansion equations (18) and (21) can be expressed in this nomenclature as: 
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The final form of the CMC equation after discretization is equation (35) for the explicit method and 

equation (36) for implicit. 

 

                                                                                               (35) 

                                                                                         (36) 

 

where    
  

     
., YH is the array in the computer code for the variable mass fraction of fuel, i is the 

index for mixture fraction and j is the index of the time step. Equations (35) and (36) were coded in 

FORTRAN to simulate the CMC modelling. 

 

4.0 Program Code using FORTRAN 

FORTRAN is a high level of programming language developed by team of IBM programmers led by 

John Backus in 1954. The name of FORTRAN was derived from the words “Formula Translation”, 

started from 1957 when the first FORTRAN compiler was used. It has evolved through FORTRAN II, 

FORTRAN 66, until now FORTRAN 2008. In this study, FORTRAN 90 was used to code the CMC 

equation that was discretised as in equation (35) and (36). Parts of the FORTRAN code for the explicit 

and implicit methods are listed in appendixes A and B. 

There are three parameters as input to the code: dt is time step size, dz is step size in space and TT 

is total time for the simulation. These three parameters will determine the accuracy and total time 

taken to run the code. The more steps taken, the longer it will take the computer to complete the 

simulation. The result of the simulation must be check to ensure its convergence meets expectations. 

These parameter must also comply with the Courant-Friedrichs-Lewy (CFL) condition [48,49] to 

ensure the stability of the solution and that the result acceptably reaches a converged solution. The 

stability of the solution is very important because an unstable condition will create large errors in the 
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solution and wrong predictions of the result. The time-step must satisfy the condition shown in 

equation (37) otherwise the simulation will produce incorrect results. 
 

     
  

    
 

 
                                                                                 (37) 

 

In order to achieve this condition, the time step must be small enough for the flow conditions. 

 

5.0 Comparison of Explicit and Implicit Methods 

Simulation is very important to reduce the experimental cost. After simulation results are obtained and 

ready to be validated, then experimentation can take place to confirm the findings and results from the 

simulation. In this study, the value for the conditional scalar dissipation N in equation (32) was 

assumed to be the constant 0.5. Results from the simulation are plotted in Figures 1, 2 and 3. The 

explicit method was found to converge faster than the implicit method, reaching the steady-state 

condition after 190 time steps whereas implicit required 247 time steps. (“Steady-state” is defined as 

no variation in 5 significant figures.) In addition, the time required for the computer to calculate one 

time step was significantly shorter for the explicit method. However, the explicit method reaches the 

steady-state too quickly due to greater errors in this method for the same time-step. The implicit 

method can have a bigger time-step      for the same accuracy as the explicit method. 
 

 
Figure 1: CMC mass fraction vs mixture fraction for first 10 iterations (a) explicit method and (b) 

implicit method 

 

Note that the first lines (from Y = 1.0 to 0.0 over the gap of Z = 0.1) are the initial conditions that 

oxidizer (left lines) is zero everywhere except at Z = 0 and fuel is zero everywhere except at Z = 1. The 

cell size used here is Z = 0.1, which is why the line drops at both edges for both methods. The explicit 

and implicit methods start to show changes for both air and fuel mass fraction immediately (after the 

first time step: the second lines in Figure 1). For the explicit method at mixture fraction equal to 0.2, 

mass fraction is still 0.00 whereas for the implicit method, for mixture fraction equal to 0.2, mass 

fraction values are between 0.0 and 0.2. This variation is because differences between adjacent cells in 

the explicit method can only march one cell at a time, while the difference influences all cells 

immediately in the implicit method. Because of this, the explicit method influences the adjacent cell 

too much, which results in the method reaching steady-state quicker. 
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These mixing processes were repeated over many time steps. Figure 2(a) and 2(b) show the 

progress for 20 time steps. The mixing process will reach steady-state and equilibrium when both air 

and fuel completely mix with both reaching 0.5 at mixture fraction equal to 0.5 (Figure 3(a) and 

Figure 3(b)). 

 
Figure 2: CMC mass fraction vs mixture fraction for first 20 iterations (a) explicit method and (b) 

implicit method 

 

 
 

Figure 3: CMC mass fraction vs mixture fraction for first 100 iterations (a) explicit method and (b) 

implicit method 
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6.0 Conclusions 

The Taylor expansion was utilized to discretize the partial differential equation for the CMC model. 

The modelling of CMC using explicit and implicit methods was successfully implemented using 

FORTRAN as the simulation software. From the results, we conclude that the implicit method is more 

accurate for the same time step, whereas it is much easier to write the FORTRAN code for the explicit 

method and the computational time to calculate is much shorter for the same time step. When 

preparing to conduct simulations, the researcher needs to balance the requirements of time step size 

with the necessary accuracy and time required for the simulations to be run. 
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Nomenclature 
W                     Chemical Source Term 

N             Scalar Dissipation Rate 

Z                       Mixture Fraction (a Conserved Scalar) 

P                      Favre Joint PDF of Composition 

B                    Constant (Function of dt and dz) 

Ea                   Activation Energy 

A, β                 Constants 

K, j                Grid Point Involved in Space Difference 

L, i         Grid Point Involved in Time Difference 

Sk         Reaction Rate for Species k 

Jik            Molecular Diffusion Flux Vector 

RANS       Reynolds Averaged Navier Stokes 

CMC        Conditional Moment Closure 

MMC        Multiple Mapping Conditioning 

PDF         Probability Density Function 

EMST       Euclidean Minimum Spanning Tree 

MC          Modified Curl's model 

YA          Air Mass Fraction 

YH          Fuel Mass Fraction 

           Favre Mean Fluid Velocity Vector 

   Composition Space Vector 

  
     Fluid Velocity Fluctuation Vector 

       Net Formation Rate per Unit Volume  

    Kinematic Viscosity,  

    Thermal Diffusivity, m
2
/s  

        Particle Composition 

    Thermal Conductivity, W/mK  

     Arrhenius Reaction Rate Coefficient 

    Density or Mean Fluid Density, kg/m
3 

R  Universal Gas Constant (8.31431 kJ kmol
-1

K
-1

) 

     Molecular Weight of a Gas Mixture 

                    Conditional Average 

        Mass Fraction of Fuel 
       Conditional Scalar Dissipation 

        Conditional Chemical Source Term 

       Conditional Generation Due to Droplet Evaporation 
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Appendix A: Part of FORTRAN code for explicit method 
 

Comment: Initial Condition 

YH(:,1)  = 0.0 

YH(L,1) = 1.0 

YA(1,:)  = 1.0 

YA(L,1) = 0.0 

Comment: Main Calculation 

Do j=1, K 

Do i=2, L 

YH(i,j+1) =((1-(2*B))*YH(i,j)) + (B*YH(i+1,j)) + (B*YH(i-1,j)) 

YA(i,j+1) =((1-(2*B))*YA(i,j)) + (B*YA(i+1,j)) + (B*YA(i-1,j)) 

End Do 

Comment: Boundary Condition 

YH(1,j+1)=0 

YH(L,j+1)=1 

YA(1,j+1)=1 

YA(L,j+1)=0 

End Do 

 

 

 

Appendix B: Part of FORTRAN code for implicit method 
 
Comment: Initial Condition 

A(1,1) = 0.0 

A(2,1) = 1.0 

A(1,2) = 0.0 

Do i=2, dz-1 

A(3,i-1) = - B 

A(2,i ) = 1.0 + 2.0 * B 

A(1,i+1) = - B 

End Do 

A(3,dz-1) = 0.0 

A(2,dz) = 1.0 

A(3,dz) = 0.0 

Comment: Factor the matrix 

Call MatrixC (dz,a,b,FF) 

Do j = 2, dt 

Call YH (z_min,z_max,t_min,t(j),B(1)) 

B(2:dz-1) = YH(2:dz-1,j-1) 

Call YA (z_min,z_max,t_min,t(j),B(dz)) 

WW = 0 

Call MatrixD (dz,a,b,WW) 

YH(1:dz,j) = B(1:dz) 

End Do 

Comment: Subroutine for matrix 

Do i = 1, n-1 

If (P(2,i) .eq. 0.0 ) then 

info = i 

Write (*, '(P)') 'MatrixD - error' 

Return 

End If 

P(3,i) = P(3,i) / P(2,i) 

P(2,i+1) = P(2,i+1) - P(3,i) * a(1,i+1) 

End Do 


