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ABSTRACT 

Climate change has to be one of the greatest environmental threats to the world 

and it has been measured that a greater negative impacts on human society and to the 

natural environment changes when it climates are drastically change. General Circulation 

Models (GCM) stated that the increment of concentration of greenhouse gases will have 

significant implications for climate at regional scales. In this simulation which so-called 

“downscaling” techniques are used to describe as a decision support tool for local climate 

change impacts. Statistical Downscaling Model (SDSM) is beneficial the rapid 

development of multiple, low cost, single-site scenarios of daily weather variables and 

future regional climate force. The application of SDSM is applied to simulate with respect 

to the generation of daily temperature and rainfall scenarios for Temerloh River, Pahang 

for 2040-2069. However, in this studies is supported on the capability of IHACRES 

model in area where hydrological data has a limitation factor. The IHACRES model is 

being applied in a regionalization approach to develop streamflow prediction. Using 

IHACRES rainfall-runoff model, it is a non-linear loss module which is to calculate the 

effective rainfall and routing a linear module converting effective rainfall into 

streamflow.    
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ABSTRAK 

 Perubahan iklim telah menjadi salah satu ancaman alam sekitar terbesar kepada 

dunia dan ia telah diukur bahawa kesan negatif yang lebih kepada masyarakat manusia 

dan alam sekitar semula jadi berubah apabila ia iklim secara drastik berubah. Model 

Edaran Umum (GCM) menyatakan bahawa kenaikan kepekatan gas rumah hijau akan 

mempunyai implikasi yang besar untuk iklim di skala serantau. Dalam simulasi ini yang 

dipanggil "penskalaan" teknik yang digunakan untuk menggambarkan sebagai alat 

sokongan keputusan untuk kesan perubahan iklim tempatan. Statistik penskalaan rendah 

Model (SDSM) memberi manfaat perkembangan pesat pelbagai, kos rendah, tapak 

tunggal senario pembolehubah cuaca harian dan daya iklim serantau masa depan. 

Permohonan SDSM digunakan untuk mensimulasikan berkenaan dengan penjanaan suhu 

dan hujan harian senario untuk Temerloh River, Pahang untuk 2040-2069. Walau 

bagaimanapun, dalam kajian ini disokong pada keupayaan model IHACRES di kawasan 

di mana data hidrologi mempunyai faktor had. Model IHACRES sedang digunakan 

dalam pendekatan serantau untuk membangunkan ramalan aliran sungai. Menggunakan 

IHACRES model hujan-air larian, ia adalah satu modul kehilangan bukan linear iaitu 

untuk mengira hujan yang berkesan dan laluan modul linear menukarkan hujan yang 

berkesan ke dalam aliran sungai. 
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INTRODUCTION 

1.1 Background of the Study 

In the recent years, the world frequently exposed to the problems of natural 

disasters and natural changes that occur to the environment. A part of the natural 

occurrence phenomenon are the extreme weather and climate change which create serious 

matters and the greatest environmental threats to our society and the world. These 

phenomenon have been discovered that will indicate greater harmful effects to human 

and the natural circulation. The climate changes happened normally in the natural 

processes such as a change on radiation by sun, volcanoes or other internal variability in 

the changes of nature system but it could be disaster due to human activities. According 

to the Department of Ecology State of Washington, the increasing level of carbon dioxide 

and other heat trapping gases to the atmosphere have warmed the Earth that are causing 

to wide-ranging impacts, including rise of sea levels, melting snow and ice, more extreme 

heat events, fires and drought, more extreme storms, rainfall and floods. Most primarily 

happen when there is a presence of carbon dioxide, (CO2) to the atmosphere and other 

greenhouse gases, methane produce by livestock and water (H2O) from nitrogen-based 

fertilizers that contribute to the phenomenon. 

Based on the 5th Assessment Report (AR5) by the International Panel on Climate 

Change (IPCC), the average global temperature shows that the reading it be 0.85℃ in a 

range of 0.65℃-1.06℃ had an increment over the period from 1800-2012 (IPCC, 2013) 

but during 100 years ago another increment of 0.74℃±0.18℃ during 1906-2005 (IPCC, 

2007). The human society and the natural environment has been disrupted due to the 

changes of such that globe mean temperature (Ashiq et. al, 2010). In a last decade, there 

are many of studies has disclosed that different regions of the globe influenced the 
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extreme change of temperature for example, summer heat wave over Russian and Europe 

in 2003 (Zong and Chen, 2000; Schar and Jendritzky, 2004; Cheng et. al, 2012; Frias et. 

al, 2012; Lau and Kim, 2012). In addition, the human mortality rates increased in the 

event due to the extreme changes in temperature (hot and cold) (Huynen et. al, 2001). 

The impact of climate changes has been the main influences to the change of 

weather, temperature, rainfall and streamflow. In spite of the significance of rivers to 

humans, it has been vague whether volcanism causes discernible changes in streamflow, 

given huge impact of the nature characteristic. Regarding to the matters, an article from 

Nature Geoscience, stated that there is statistically significant reductions in flow 

decreases in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey 

and Kolyma, amongst others supporting with the data from neighbouring rivers are 

combined based on the areas where climate models simulate either an increase or a 

decrease in precipitation following eruptions and a significant (p < 0.1) decrease in 

streamflow following eruptions is detected in northern South American, central African 

and high-latitude Asian rivers, and on average across wet tropical and subtropical regions 

(Carley E. Iles, 2015). This nature occurrence shows that future volcanic eruptions could 

substantially affect global water availability. Streams are critical for biological systems 

and individuals, including for local utilize, agribusiness, industry and power era. 

Streamflow coordinates surplus precipitation over a catchment, conquering testing issues 

related with rain gage information, especially inaccessible boundaries. Streamflow is 

controlled by precipitation less evaporation and transpiration, and changes away for 

example in snow, ice, groundwater or reservoirs.  

Whereas, in Malaysia it frequently happened that high floods which occurred by 

the streamflow lead in budgetary harms and they are connected with human's life. 

Malaysia has been involved with a long time by flood disaster since 2020. Progressively, 

as we move towards the year 2020, the nation is relied upon to confront genuine 

difficulties identified with surge and dry spell administration. In addition, Malaysia has 

been associated with quite a while by surge fiasco since 1920. The nation has encountered 

real flood occasions in the times of 1926, 1963, 1965, 1967, 1969, 1971, 1973, 1979, 

1983, 1988, 1993, 1998, 2005. In 1886, Kelantan was confronted with a serious floods 

with intense winds. Over a century, in 1967 tremendous floods occurred over Kelantan, 

Terengganu and Perak river basins. In 1971, a hilarious flood occured over many parts of 
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the country, for example, Pahang. As of late, in December 2006 and January 2007 floods 

was primary worry of administrative issues for Johor. At last, floods happened in 

Kelantan in 2014 which made a disastrous wonder for who lives in urban region. 

However, inquire about on the reaction of streamflow to volcanism is constrained and 

has concentrated on individual ejections. A critical decline in worldwide streamflow was 

observed by the following after the 1991 Pinatubo emission, and direct abatements taking 

after the 1963 Agung and 1982 El Chichon ejections.  

Therefore, various modelling and simulation has been made for predicting 

variability and changes in climate variables as well as parameter to forecast for long term 

framework of climate change. The most common approach in predicting the variability 

and changes in climate variables is Global Climate Model (GCM) with the existence of 

carbon dioxide (CO2) in different excretion scenarios (Fowler et. al, 2007; Gu et. al, 

2012). However, the GCMs require high resolution of regional scales to satisfy the 

represent of complex topographical features when there is hydrological and 

environmental impacts of climate changes need to be examined. To overcome the 

problem, a few statistical and dynamical downscaling has been established in order to 

make the GCM’s output is useful at a local and regional level (Mahmood and Babel, 

2013). Based on these downscaling models, the Statistical Downscaling Model (SDSM) 

has been exposed widely to the studies of the world climate change either in mean or 

extreme condition throughout the assessment (Wilby et. al, 2012; Mahmood and Babel, 

2013). For conceptual models, it is complex description of the internal processes which 

that involved in determine the catchment response, can be more complex depending on 

the structure of the model. Whereas, physic-based models is a model which involve 

numerical solutions relate to relevant solutions of motion. Furthermore, the IHACRES 

model which is about six parameters, influence to regionalisation problems to make it 

easier than complex model so that it can be related to the features of landscape. 
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1.2 Statement of the Problem 

The potential effects of climate change towards the hydrology and water resources 

provide a very large impact to our environment. The local and global climatic conditions 

has strongly been the greatest influencer in determining the characteristics of hydrology 

variables. It is very important to identify how great the changes of global climate may 

affect the characteristics of hydrology variables in a certain watershed which can cause 

flow of the stream to a different rivers, basins or seas. All the information is very 

important and valuable in order to measures hydrology variables for development and 

management in the future. 

Malaysia is developing country and is located in a tropical rain forest region 

where it required an optimal management of water resources are at each major catchments 

area. It is generally had through experienced in two distinct seasons which is rainy season 

and dry season. Malaysia is estimated to receive more than 2500mm of rainfall annually. 

However, the total annual rainfall that has been received is not necessarily is the same in 

every month because it is depends on weather conditions which is influenced by the 

monsoon. Based on Ekkawatpanit et.al (2009) stated that extra planning should be taken 

in the strategy to maintain water resources in a sustainable and the range of extreme 

hydrology condition can be reduced. This is because, many South-East Asian countries 

has rapidly developed and urbanization which lead to the shortages in water supply. 

Therefore, the idea of attempt in streamflow modelling which is from precipitation to 

streamflow using algorithm of mathematics gives a better visualization in understanding 

the movement of water. 

The parameters of streamflow has been simulated by streamflow modelling based 

on the streamflow data existing for last 30 years. In addition, the air temperature and 

rainfall events and climate is influenced to the impacts of hydrological cycle balance. In 

order to make a prediction towards the streamflow, the evaluating of impact of climate 

change is an important matter to be discussed in the hydrology research. For the Temerloh 

River in Pahang, it flooding frequently happened especially during northeast monsoon. 

The streamflow during dry season is low compared to wet season therefore, availability 

of data existing need to be accurate and precise in making long term prediction. From the 

previous studied around Peninsular Malaysia, four rivers including the Johor River 
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located in southeast Peninsular Malaysia indicated significant increasing precipitation 

trends at the 95% significance level. Generally, catchments from tropical monsoon 

regions (i.e. Malaysia, Indonesia and Thailand) exhibited significant increasing 

precipitation trends due to climate change compared to humid and temperature zones. 

However, no regional trend analysis was performed due to lack of available data (Aizam 

Adnan, 2010). 

The east coast Malaysia experienced humidity and heavy rains from November 

to February brought by northeast monsoon. Pahang River is the main channel to drain off 

water from the inundated area of Pahang Basin to the South China during wet season 

caused by northeast monsoon. Therefore, the aim of the study is to generate the long term 

streamflow trend. 

 

1.3 Objective of the Study 

 

The objective of the study is: 

1. To generate the future trend of the rainfall and temperature using Statistical 

Downscalling (SDSM) model at Temerloh River in year (2040-2069). 

2. To estimate the pattern changes of water streamflow using IHACRES model. 

 

1.4 Scope of the Study 

This study is focused on the long-term pattern of water streamflow in the context 

of climate change impact. In this project, the 30 years historical data of temperature, 

rainfall and streamflow were needed to generate the future changes in year of 2040 to 

2069. These historical daily rainfall and streamflow data provided by the Malaysia 

Meteorological Department (MMD) meanwhile the historical mean temperature data 

provided by the Department of Irrigation and Drainage Malaysia (DID). In addition, the 

statistical downscaling model (SDSM) was used to predict the climate trend in the region 
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with considered the GHGs contaminant. The study was focused at the Temerloh River in 

Pahang to analyse the climate change using the existing data variables. 

 

1.5 The Importance of the Study 

The importance of the study is to determine the long-term pattern streamflow in 

Temerloh River, Pahang which affected by the climate change. The performance of 

SDSM as a streamflow statistical model at Temerloh River can be measured by 

comparing the climate data based on MMD. Notwithstanding that, another figure in 

recreating and demonstrating of precipitation overflow is made by the IHACRES display 

in light of the late day by day precipitation information. The significance of this study is 

as effectively distinguish the information conveyance of precipitation and temperature in 

the zone under study and correspond between information for precipitation and 

temperature are broke down in the impact of environmental change in the zone. Thisly, 

in a roundabout way mindful of the foundation environment and hydrological attributes 

in the territory and ready to envision environmental change the circulation of the amount 

of rain will happen later on at region of study. 
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LITERATURE REVIEW 

2.1 Introduction 

The effect of stream increments because of urbanization would rely on upon the 

magnitude and type of climate changes. As a rule, streamflow is diminished by expanding 

air temperatures and expanded by rising amounts of precipitation. Based on the final 

report of the United States Environmental Protection Agency (EPA, 1995), an 

extraordinary environmental change, on a yearly premise, would be a 4℃ increment in 

air temperature and a 20 percent diminish in precipitation. EPA added that, for the 21 

provincial watersheds concentrated, mean yearly streams would be diminished by around 

40 to 50 percent if air temperature expanded by 4℃ and precipitation were lessened by 

20 percent. It shows clearly that, a 103 percent expansion in stream because of 

urbanization would counterbalance the 40 to 50 percent diminish in stream because of 

environmental change to deliver a 53 to 63 percent net increment in stream. In addition, 

annually normal streamflow has expanded at many locales in the Northeast and Midwest, 

while different districts have seen couple of considerable changes. The potential ruling 

impact of urbanization adds to the unpredictability of evaluating future impacts of 

environmental change on streamflow. Consolidated changes in temperature and 

precipitation over a watershed will direct the impacts of environmental change on stream 

later on. The effect of urbanization on stream will rely on upon the adjustments in 

populace density. 

The extreme changes of climate became one of the most major issues in society. 

Climate change can be defined as a change of long term weather patterns for several 

decades or longer and it is usually at least 30 years or more which happen towards our 

environment. Climate change happened normally in the Earth affected by the natural 
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processes such as a change on a radiation by sun, volcanoes or other internal variability 

in the changes of nature system. But nowadays, the changes of climate become worse 

due to human activities such as land development. The climate expectation is not what it 

used to be it is because climate change for past is not usually can be reliable to the future. 

It might be change either it is very significant change or slightly differ compared to past 

data changes. According to the Department of Ecology State of Washington (DESW, 

2007), the increasing level of carbon dioxide and other heat trapping gases to the 

atmosphere have warmed the Earth. The changing of climate trend are causing to rises of 

sea levels, melting snow and ice, frequent extreme event of heat, fire drought, storms, 

heavily rainfall and flood. Furthermore, the trend will continuing and some cases will 

causes significant risks to human health, forests, agriculture, freshwater supplies, 

coastlines and other natural resources that are vital to economy, environment and life 

quality.  

Over the last 200 years, the human activities effects to the sustainable of 

environment quality. The biggest contribution is burning a fossil fuels such as charcoal, 

gases and oils which emits to the greenhouse effects. Most primarily happen when there 

is a presence of carbon dioxide (CO2) to the atmosphere and other greenhouse gases, 

methane produce by livestock and water (H2 O) from nitrogen-based fertilizers that 

contribute to the phenomenon. Moreover, the population of human growth is increasing 

year by year which affected the rising of municipal solid waste (MSW) to the worldwide. 

Other alternatives of waste management to the landfilling should be taken in order to 

manage the MSW generation rate. Based on United Stated Environmental Protection 

Agency (USEPA, 2006) and European Environment Agency (EEA, 2013) stated that the 

MSW landfill in the US had decreased by 41.106 then slightly increased up to 28.106 

during year 2001 to 2010. This report was supported by Themelis and Mussche (2014) 

and Ule’n (1997), which produce the same pattern and anticipated in the other fast 

growing World’s countries. Furthermore, the composite of MSW gave out a critical 

problem when it expose to the surrounding area which compost to wind as well as rainfall 

that may cause filtering and overflow. The environmental impact which affected by 

runoff and filtering from the MSW compost is still be poorly distinguished. These 

circumstances may lead to the potential pollution to the environment with nutrients and 

heavy metals if it is not in a proper controlled. 
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Other impacts of climate changes is the temperature rises year by year. Since the 

last century, the Earth’s average temperature increased to -17℃ and the average 

temperature are expected to rise as much as -11.40℃ over next century. Based on the 

climate pattern, the temperature is extremely increases parallel to the industrial 

revolution. Subsequently, developing studies were accounted for on environmental 

change and effect look into, including temperature increment, yearly precipitation 

change, and actuated overflow change over the Tibetan Level (Arora, 2002). In any case, 

learning on the change of atmosphere extremes over the area is still inadequate in this 

way. Referring to the Intergovernmental Panel on Climate Change (IPCC) report, the 

global surface temperature has rises up to 0.74℃ in the most recent century (1906-2005) 

and 0.13℃ for 10 years compared to the last 50 years the surface temperature is also 

estimating to increase in average 0.2℃ per decade for upcoming 20 years achieving 1.1-

6.4℃ (IPCC, 2007).  

United States of Environmental Protection Agency (USEPA) stated in the course 

of the most century, the annual temperature in the northwest has ascended by around 

₋17.10℃. The temperature is anticipated to rise in range -16℃ to -12℃ at the end of the 

century. The biggest increment is expected happened during mid-year. The effects of 

rising temperatures, changes in precipitation and decreased soil dampness may affect 

forests which it ended up hotter and drier. An expansion in the number and size of rapidly 

spreading fires has been seen in the local in late decades. USEPA added that the 

temperature change is effect to the biological system and demonstrate the projections  

  

2.2 Global Climate Model (GCM) 

Climate model are refer to the mathematical formulation which presented the 

interaction and reaction between the environment, atmosphere, land, ocean, ice and the 

sun. It is impossible for human to make prediction without tools because it is very 

complex with only limited ablity of human nature. Therefore, models was introduced to 

predict and estimate the trend not an events. For example, model could tell you it will be 

cold during winter season but it could not tell you what is the specific temperature on a 

specific day and that is called weather forecasting. Usually, models will take about 30 
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years for future prediction on a climate trends which is weather and average over time to 

time. 

Global climate model (GCM) which has been used to perform the climate change 

for developing the moderation and modification strategies in order to make prediction on 

climate in different scenarios of concentrations of aerosol and greenhouse gas or other 

forcings. Unfortunately, based on Houghton et. al (2001), McCarthy et. al (2001), 

McGuffie and Henderson-Sellers (1997), even the GCM simulate well in large scale 

climate but its application to regional studies are limited to its course resolutions and 

capability in sort out the local and regional scale dynamics.  

Figure 2.1 shows that the GCMs delineate the atmosphere utilizing a three 

dimensional matrix over the globe, normally having a flat determination of in the vicinity 

of 250 and 600 km, 10 to 20 vertical layers in the environment and once in a while 

upwards of 30 layers in the seas. Their determination is along these lines very coarse with 

respect to the size of exposure units in most effect evaluation. In addition, numerous 

physical procedures, for example, those related to clouds, likewise happen at littler scales 

and can't be proper displayed. Rather, their known properties must be arrived at the 

midpoint of over the bigger scale in a strategy known as parameterization. This is one 

uncertainty in GCM-based simulations of future atmosphere. Others identify with the 

simulations of different criticism instruments in models concerning, for instance, water 

vapor and warming, clouds and radiation, sea dissemination and ice and snow albedo. 

Hence, GCMs may reproduce very extraordinary reactions to the same compelling, just 

due to the way certain procedures and criticisms are displayed. 
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Figure 2.1: The view of the resolution of Global Climate Models depict the climate 

using a three dimensional grid over the globe. 

 

After some time, high-resolution of the GCMs and advances in model detailing 

will decrease these obstructions, yet the heap of atmosphere effects questions makes it 

impossible that even these enhanced models will have the capacity to adequately address 

all scales and application of interest. In order to overcome the complexity of the GCM, a 

variety of downscaling techniques might be utilized to handle and refine GCM output 

with the point of delivering output more reasonable for effects thinks about. The refined 

output goals to address the confinements of coarse determination and additionally biases 

inclinations in the GCM output. However, the choices of potential predictors of the GCM 

is an important part in downscaling techniques. The predictor selection may vary in 

different area depending upon the characteristics of the output and the characteristics of 

the predictand. 
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2.3 Downscaling Model 

 Downscaling is a technique to take data in the large scales to make forecasts in 

the smaller scales. The two principle ways to deal with downscaling atmosphere there are 

dynamical and statistical. Dynamical downscaling (DD) requires running high-

determination atmosphere models on a regional sub-space, utilizing observational 

information or lower-resolution atmosphere demonstrate yield as a limit condition. These 

models utilize physical standards to imitate nearby atmospheres, yet are computationally 

escalated. Statistical downscaling (SD) is a two-stage prepare comprising of i) the 

improvement of measurable connections between nearby atmosphere factors as an 

example is surface air temperature and precipitation with large scale predictors such as 

pressure fields; and ii) the use of such connections to the yield of global atmosphere show 

analyses to simulate local climate for the future. 

DD show approach is a Regional Climate Model (RCM), which alludes to the 

physical limit conditions on a local scale GCM. This approach requires a complexity of 

design outline and high computational cost. SD model is a computationally basic and 

practical one that is done by deciding the empirical function that associates between 

atmospheric circulation variables and nearby local climate variables.  In 1997, Wilby and 

Wigley split up downscaling into four classes: regression techniques, climate design 

based methodologies, stochastic climate generators, which are all factual downscaling 

strategies, and restricted range modelling. Among these methodologies regression 

techniques are favoured as a result of its simplicity of usage and low calculation 

prerequisites. Based on table 2.1, it shows that the comparison of the strength and the 

weaknesses between statistical downscaling and dynamical downscaling. 
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Table 2.1: Comparison of the main strengths and weaknesses of statistical downscaling 

and dynamical downscaling 

(Sources: R.L. Wilby, C.W. Dawson, E.M. Barrow 2000,2001, The strength and 

weakness of SD and DD) 

 

2.3.1 Dynamical Downscaling (DD) 

As DD require higher resolution RCM within a course in a resolution GCM 

(McGregor, 997; Giorgi and Means, 1999). By using horizontal grid spacing of 20 km to 

50 km to simulate the physical dynamics of the atmosphere, it is to define the time vary 

with the atmospheric boundary conditions in a finite domain  using Global Climate Model 

 Statistical Downscaling Dynamical Downscaling 

Strength  Climate bearing-

scale’s data from 

GCM-scale output 

 Allow assembles of 

climate scenarios 

permit risk 

 Flexible 

 Cheap, undemand 

computationally, 

transferable 

 10-50 km climate 

bearing-scale’s data from 

GCM output 

 Resolve atmosphere 

process such precipitation 

topographic 

 Consistent with RCM 

 Feedback to physical 

consistent by external 

loadings 

Weaknesses  Depends on the 

realistic GCN 

boundary loading 

 Location & land size 

affects result 

 Predictor-predictand 

relationship common 

uniform 

 Need high quality 

data for calibration 

 Low-sensitivity 

climate variable 

problematic 

 Depends on the realistic 

GCM boundary loading 

 Location & land size 

affects results 

 Gathered climate 

scenarios rarely produced 

 Require important 

computing resources 

 Unready transferred to 

new region 
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(GCM). The situation simulate by The Regional Climate Models (RCM) also vulnerable 

to the choice of the state of the boundary (such as soil moisture) are used to established 

the experiments. The most barrier of RCMS is its computationally demanding as GCMS 

in a scope of limitation on putting the feasible domain size, amount of experiments and 

simulation’s period. What is good about RCMs is it can fix the smaller-scale of 

atmospheric which is better than GCM. Other than that, RCMs can used to explore the 

relative significance of vary external loadings. 

Downscaling procedures can be moderately uncomplicated. For instance, 

contrasts between a future period and the present are computed for each GCM framework 

cell, the irregularities are interjected to a high determination network and the distinctions 

are included to observe climatology a similar high resolution grid (Tabor and Williams, 

2010). An extra calculation is generally utilized for precipitation to scale demonstrated 

modelled so the progressions are basically changed over to percent change that is reliable 

with observed values. Dynamical downscaling or regional climate modelling (RCM) 

additionally depends on output from GCM simulations. Output from GCM reproductions 

is utilized to infer time-fluctuating (for instance, 6-hour) lateral (vertical profiles of 

temperature, humidity, wind) and surface (weight and ocean surface temperature) limit 

conditions for a three-dimensional model area that is chosen to catch the imperative and 

mesoscale environmental course features that decide the climatology of a region of 

interest. The 6-hour limit conditions are absorbed along the four edges and surface (sea) 

of the model area and the RCM at that point simulate environmental flow and surface 

interactions inside. 

In addition, the atmosphere variability of the driving GCM decides the change of 

the atmosphere produced by the RCM. Even though local climates models can enhance 

the points of interest of GCM reproductions through dynamical downscaling over 

complex landscape, they cannot for instance, enhance significant improvements to 

features of the large scale delivered by a GCM. It means, for instance, if the jet stream is 

erroneously set in a GCM, it is also will be inaccurately set in the RCM. Regional climate 

simulations reflect not just model-to-model contrasts among the driving GCMs but 

additionally added interior biases with parameterization of physical procedures. It is 

known, for instance, that the decision of the numerical plan that is utilized as a part of 
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RegCM3 to reproduce convective precipitation impacts another fields for example air 

temperature. 

2.3.2 Statistical Downscaling (SD) 

The Statistical Downscaling Model (SDSM) was developed by Willy et. al 

(2002). SDSM is a combination of the Stochastic Weather Generator (SWG) with 

Multiple Linear Regression (MLR). The function of MLR is to generate either statistical 

or empirical relationship between predictors and predictands of NCEP in the screening 

process of predictors as well as SDSM results to some regression parameters in 

calibration process. Those parameters together with NCEP and GCM predictors is to 

generate a maximum of 100 daily time series so that it is fit closely with the observed 

data validation. Furthermore, there is two types of models which each conditional and 

unconditional sub model used as an independent variable while the conditional sub model 

used as a dependent variable (Willy et. al, 2002; Ashiq et. al, 2010). Statistical 

downscaling is a like to the “Perfect Program” and “Model Output Statistics” (MOS) 

which exposure used for numerical weather prediction in a short-range (Klein and Glahn, 

1974). Moreover, most of methodologies of statistical downscaling have various 

advantages than studies of dynamical downscaling. Statistical downscaling are currently 

provide more options in a situation of low-cost and require fast valuation of impacts on 

high climate change localized. 

In addition to that, SDSM is the first instrument of its type that present for broader 

climate change which impacts to community. Most statistical downscaling models are 

constricted on its usage only to specialist researchers on established their research. The 

operation and structure of downscaling techniques can be relate to preliminary screening 

of possible downscale predictor variables, gathering information and calibration of 

SDSM, composition of present climate data using predictor variables and analyse 

observed data and climate change scenarios. Before proceeding these five scope of 

operations, the assumptions and outlined of SDSM prerequisites are required. 

Downscaling are initiate when the simulations of GCM or RCM of require variables are 

irrelevant at the temporal scales it’s either because the point scales are not in range of 

climate model’s plan or model deficiencies.  
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Based on the article Royal Meteorological Society (RMets), two models were 

produced with National Centres for Environmental Prediction (NCEP) reanalysis and 

HadCM3 outputs, for statistically downscaling these outputs to monthly precipitation at 

a site in north-western Victoria, Australia seen that the downscaling model created with 

NCEP performs much superior to anything the model created with HadCM3 outputs (D. 

A. Sachindra, F.Huang, A. Barton, 2014). Besides, it was discovered that there is bias in 

HadCM3 output which should be remedied compared to the downscaling model created 

with NCEP outputs was utilized to downscale HadCM3 twentieth century atmosphere 

explore outputs to monthly precipitation over the period 1950–1999. It shows that, the 

performance of SDSM produced a better simulation of climate change using NCEP 

compared to the outputs of HadCM3 scenarios. 

 

2.4 National Centers for Environmental Prediction (NCEP) Variables 

The United States National Centres for Environmental Prediction (NCEP) 

conveys national and worldwide climate weather, water, atmosphere and space climate 

direction, forecasts, notices and analyses to its Partners and External User Communities. 

These items and administrations depend on an administration science inheritance and 

react to client needs to ensure life and property, upgrade that country's economy and 

bolster the country's developing requirement for environmental data. The observed large-

scale predictors have been gotten from the NCEP reanalysis dataset (Kalnay et al., 1996). 

There are no general rules for the determination of predictors in various parts of the world, 

and in this way, therefore, reaching pursuit of predictors is vital. Twenty-six NCEP 

factors that are generally anticipated by different atmosphere models, for the 

determination of indicators. The depiction of 26 NCEP factors is given in Table 2.2.  

The climatic framework is impacted by the consolidated activity of numerous air 

factors in a wide tempo-spatial space. Any single course predictor or small tempo-spatial 

space are probably not going to be adequate for atmosphere projection, as they neglect to 

capture key precipitation mechanism in view of thermodynamics and vapour content. 

Based on the recommendations of Wilby and Wigley, the regional sypnotic circulation 

pattern that added to the irregular precipitation design in Malaysia were considered in the 
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choice of the spatial space of every indicator, represented as 42 matrix focuses 

encompassing the study area. 

 

 

 

 

 

2.5 Emission Scenarios Affected the Climate Change 

The planet's climate has always been changing over topographical time. The 

global of the average temperature today is around 15C, however geographical proof 

recommends it has been significantly higher and lower previously. In addition, the 

present time of warming is happening more rapidly than numerous past events. 

Researchers are concerned that the regular change, or inconstancy, is being overwhelmed 

by a quick human-incited warming that has genuine implications for the steadiness of the 

planet's climate. The essential cause of the change of climate is the consuming of fossil 

Table 2.2: Description of 26 NCEP variables used for predictor variables 

No. variables Description No. variables Description 

1 mslp Mean sea level pressure 14 p5zh 500 hPa divergence 

2 p_f Surface airflow strength 15 p8_f 8500 hPa airflow strength 

3 p_u Surface zonal velocity 16 p8_u 850 hPa zonal velocity 

4 p_v Surface meridional velocity 17 p8_v 850 hPa meridional velocity 

5 p_z Surface vorticity 18 p8_z 850 hPa vorticity 

6 p_th Surface wind direction 19 p800 850 hPa geopotential height 

7 p_zh Surface divergence 20 p8th 500 hPa wind direction 

8 p5_f 500 hPa airflow strength 21 p8zh 850 hPa divergence 

9 p5_u 500 hPa zonal velocity 22 rhum Near surface relative humidity 

10 p5_v 500 hPa meridional velocity 23 r500 Relative humidity at 500 hPa 

11 p5_z 500 hPa vorticity 24 r850 Relative humidity at 850 hPa  

12 p500 500 hPa geopotential height 25 shum Near surface specific humidity 

13 p5th 500 hPa wind direction 26 temp Mean temperature 
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fuels, for example, oil and coal, which emits greenhouse gases into the atmosphere—

basically carbon dioxide, CO2.  

Our comprehension of climate change is to a great results from the 

Intergovernmental Panel on Climate Change (IPCC), the world's most definitive voice 

on the topic. Produced by the United Nations, the IPCC evaluates the scientific and socio-

economic data applicable to the change of climate. In addition, The IPCC looks at the 

potential effects of environmental change, and alternatives for backing it off or adjusting 

to it. Regarding on the IPCC, they has established a few appraisal reports throughout the 

years. More than 2,500 scientific master reviewers, 800 contributing authors and 450 lead 

authors from more than 130 nations added to the last one, the Fourth Assessment Report 

(AR4). The Fifth Assessment Report's Working Group I (AR5) report is relied upon to 

be released in 2013. 

In order to overcome the problem of climate change which is it potential to 

become more seriousness is extremely high, the IPCC has established a several emission 

scenarios. The primary reasons for socio-economic scenarios in the assessment of climate 

impacts, adjustment and helplessness are to portray the statistic, socio-economic and 

technological driving forces of fundamental anthropogenic greenhouse substance 

outflows which cause environmental change; and to portray the affectability, adaptive 

capacity and powerlessness of social and economic frameworks in connection to climate 

change (Carter et al., 2001). In spite of the fact that greater emphasis in these rules is put 

on the second goal, the Data Distribution Centre (DDC) socio-economic pages give data 

supporting both, perceiving that the scenarios supporting effect and adjustment studies 

should be consistent with those expected for emissions and thus for atmosphere and for 

other environmental scenarios. 

Based on the Intergovernmental Panel on Climate Change (IPCC, 2013), five 

criteria that ought to be met by atmosphere scenarios in the event that they are to be 

helpful for effect scientists and approach producers are proposed is for Criterion 1, 

consistency with worldwide projections. It is to be predictable with a wide range of a 

global warming projections in view of concentration greenhouse gasses. This range is 

differently referred to as 1.4°C to 5.8°C by 2100, or 1.5°C to 4.5°C for a concentration 

of carbon dioxide, CO2. The Criterion 2, it should be physical believability. This criterion 
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is to be physically conceivable; that it is ought not to damage the fundamental laws of 

physics. Subsequently, changes in one district ought to be physically constant with those 

in another area and all inclusive. In addition, the combination of changes in various 

factors (which are frequently related with each other) ought to be physically predictable. 

Another Criterion 3 is applicability in effect evaluations. This scenario is to depict 

changes in an adequate number of factors on a spatial and temporal scale that takes into 

account affect evaluation. For instance, affect models may require input information on 

factors, for example, precipitation, sunlight based radiation, temperature, humidity and 

windspeed at spatial scales going from worldwide to site and at temporal scales going 

from annual intends to daily or hourly esteems. For the Criterion 4, it is a representative 

and is to be illustrative of the potential scope of future provincial environmental change. 

Just thusly can a practical scope of conceivable effects be evaluated. Finally, for the 

Criterion 5 it is accessibility where it is to be clear to get, interpret and apply for effect 

assessment. Many effect assessment projects with different scenarios advancement 

segment which particularly intends to address this last point. The DDC and this direction 

report are likewise intended to enable meet this to require.  

 

2.5.1 Representative Concentration Pathways (RCPs) 

Representative Concentration Pathways (RCP) is a types of scenarios processes 

for 5th IPCC Assessment Report (AR5). Four RCPs were chosen and characterized by 

their aggregate radiative forcing which is a cumulative measure of human emission of 

Greenhouse Gas Emission (GHGs) from all sources communicated in Watts per square 

meter pathway and level by the year of 2100. The RCPs were selected to a wide range of 

climate results, in light of a literature review, and are neither forecasts nor arrangement 

suggestions. However, RCPs had it uses and points of confinement of the RCPs. While 

each single RCP depends on an internally consistent set of socioeconomic presumptions, 

the four RCPs together can't be dealt with as a set with reliable interior socioeconomic 

rationale. For instance, RCP8.5 can't be utilized as a no-atmosphere approach financial 

reference situation for alternate RCPs in light of the fact that RCP8.5's socio-economic, 

technology, and biophysical assumptions contrast from those of other alternate RCPs.  
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Each RCP could results of various of economic, technology, statistic, policy, and 

institutional fates. For instance, the second-to-most minimal RCP could be considered as 

a moderation mitigation scenario. In any case, it is likewise consistent with a baseline 

scenario that accept a global development that focuses on technological enhancements 

and a move to service industries yet does not mean to lessen the ozone greenhouse gases 

emission as an objective in itself. 

The four RCPs utilized a typical historical emissions information to instate the 

assessment models. The four RCPs were recreated in Integrated Assessment Models to 

2100. The climate modelling group requested for extra scenario instruction out to 2300 

for long term climate reaction research. Table 2.3 shows give connects to original 

informational indexes as posted by these researchers. 
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Table 2.3: Representative Concentration Pathways (RCPs) description and citations 

 Description IA Model Publication – IA 

Model 

RCP8.5 Rising radiative 

forcing pathway leading 

to 8.5 W/m2 in 2100 

MASSAGE Riahi et. al (2007) 

Rao & Riahi 

(2006) 

RCP6 Stabilization without 

overshoot pathway to 6 

W/m2 at stabilization 

after 2100 

AIM Fujino et. al 

(2006) 

Hijoka et. al 

(2008) 

RCP4.5 Stabilization without 

overshoot pathway to 4.5 

W/m2 at stabilization 

after 2100 

GCAM         

(MiniCAM) 

Smith and 

Wingley (2006) 

Clarke et. al 

(2007) 

Wise et. al (2009) 

RCP2.6 Peak radiative 

forcing at ~ 3 W/m2 

before 2100 and decline 

IMAGE Van Vuuren et. al 

(2006; 2007) 

 

 

2.6 Rainfall-Runoff Modelling 

Burns and James (1972) developed a streamflow accounting model of the basin 

to address many of the same issues described in this report. The model was simplistic by 

comparison with current standards, however, and its ability to address complex 

hydrologic problems was limited. For example, the model calculated streamflow in 

subbasins with the streamflow per unit drainage area that was measured at the gaging 

stations, and thus, the model did not account for differences in the land use or physical 
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properties of the subbasins. Further, the model simulated streamflow with a monthly time 

step that is inadequate for evaluating the magnitude and frequency of low flows. 

A runoff model is a scientific model depicting the rainfall–runoff relations of a 

precipitation catchment area, drainage or watershed. All the more definitely, it creates a 

surface overflow hydrograph in response to rainfall event, represented by and 

contribution as a hyetograph. At the end of the day, the model ascertains the change of 

precipitation into overflow.  

A common runoff model is the linear reservoir, yet it has restricted contributions. 

The runoff model with a non-linear reservoir is all the more generally relevant, yet at the 

same time it holds just for catchments whose surface range is constrained by the condition 

that the precipitation can be viewed as more or less consistently dispersed over the zone. 

The greatest size of the watershed at that point relies on upon the characteristics of rainfall 

of the district. At the point when the review zone is too large, it can be partitioned into 

sub-catchments and the different runoff hydrographs might be combined using flood 

routing techniques. Rainfall-runoff models should be calibrated before they can be 

utilized. Table 2.4 shows model type of rainfall-runoff modelling with assessment of 

strength and weaknesses of different runoff model structures. 
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Table 2.4: Assessment of strengths and weaknesses of Different Rainfall-runoff 

Model Structures 

 

 

 

 

2.6.1 Empirical methods 

Empirical methods to rainfall-runoff modelling typically involve the fitting and 

application of simple equation(s) that relate drivers of runoff response to flow at the 

catchment outlet. Empirical equations are most often derived using regression 

relationship. Regression relationships are black-box models, although some degree of 

process reasoning can come in. Due to the availability of catchment attributes in 

geographic information systems, correlations between model parameters and catchment 

attributes are widely used in regionalization (e.g. Sefton & Howarth, 1998, Seibert, 1999; 

Criteria Model Type 

Empirical Large Scale 

Energy-Water 

Balance 

Conceptual Landscape 

Daily 

Run time step Daily (if flow 

from another 

gauge), annual 

Mean annual 

runoff 

daily daily 

Number of 

parameters 

1 to 5 2 to 4 4 to 20 10 to 100 

Risk of over-

fitting 

Low Very low moderate high 

Need for high 

resolution 

none Low to 

moderate 

low high 

Ability to 

implement run 

for calibration 

Not 

required– 

obtained by least 

square fitting 

Not required Very good good 

Level of 

expertise within 

Australian water 

industry 

strong moderate strong weak 

Previous 

calibrated model 

available 

Moderate to 

low 

moderate Very high low 
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Kokkonen et al., 2003; Merz & Blöschl, 2004). In multiple regressions, one may 

encounter the problem of multicollinearity, when at least one of the attributes is highly 

correlated with another attribute or with some linear combination of them. If 

multicollinearity is present, the regression coefficient can be highly unstable and 

unreliable (Hirsch et al., 1992). One therefore limits the number of catchment attributes 

used in the regression, sometimes combining a number of attributes into an index, which 

is assumed to be representative of one aspect of the rainfall–runoff relationship (such as 

the base flow index, IH, 1999). 

In the streamflow analysis, common predictor variables may include rainfall for 

the catchment, flow observed at another gauge in the vicinity, evapotranspiration, 

groundwater levels, vegetation cover and the impervious area within the catchment. 

Where rainfall is used as a predictor variable, regression relationships derived almost 

always include a non-linear relationship between rainfall and runoff. 

All catchments incorporate storage elements, including interception by 

vegetation, storage within the soil column, groundwater storage and storage within stream 

channels. Catchment storage typically results in runoff from the catchment being within 

stream channels. Catchment storage typically results in runoff from the catchment being 

an integrated function of the climatic conditions for the catchment over some period prior 

to the period for which runoff is to be calculated by the model. Therefore, the empirical 

models that produce acceptably accurate simulations of runoff are either applied at 

sufficiently long time steps that changes in internal water storage within the catchment 

can be ignored as an example annual time step or applied to represent an integration of 

the climatic conditions that occurred over some time period prior. As a practical example, 

for most catchments a regression model that only includes daily rainfall on the current 

day is likely to produce a very poor estimation of daily runoff but a model for predicting 

daily runoff that used individual values of daily rainfall for several days prior may 

produce acceptable runoff estimates. 

Empirical regression relationship are often developed using spreadsheets. They 

can also be fitted using more sophisticated statistical analysis packages, which may more 

facilitate the investigation of predictor variables. For general information on the 
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development of regression relationships, the modeller is referred to NIST/SEMATECH 

e-Handbook of Statistical Method (Nist and Sematech, 2010). 

Empirical regression equations are the best suited to situations where there are 

two flow gauges on the stream with partially overlapping periods of record, which are 

therefore subject to similar climatic drivers, and the regression equation is used to extend 

the simulated flow to the combined period of record from both sites. They can also 

produce adequate simulations for neighbouring gauged catchments with overlapping 

periods of record in situations where the two catchments are subject to similar rainfall 

time series and are relatively similar hydrologically. 

 

2.6.2 Large Scale Energy-water Balance Equations 

The large scale energy-water balance methods are based on the hypothesis of 

available energy and water governing large scale water balance. These are usually 

developed using large scale observed data sets as an example the Budyko curve (Budyko, 

1958) was developed using mainly European data and numerous other forms have been 

proposed to improve estimates in local regions and to account for different land cover 

types (Aurora, 2002). One of the popular forms of the Budyko method is the rational 

function equation (Zhang et. al, 2004) where a single parameter, α, in the equation can 

be calibrated against local data to tune the method for the local conditions. The inputs to 

these equations are rainfall and potential evapotranspiration (PET) and the output is 

runoff at mean annual time step. 

 

2.6.3 Conceptual Rainfall-Runoff Models 

Conceptual rainfall-runoff models represent the conversion of rainfall to runoff, 

evapotranspiration, movement of water to and from groundwater systems and change in 

the volume of water within the catchment using a series of mathematical relationships. 

Conceptual rainfall runoff models almost always represent storage of water within the 

catchment using several conceptual stores that can notionally represent water held within 

the soil moisture, vegetation, and groundwater or within stream channels within the 
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catchment. Fluxes of water between these stores ad in and out of the model are controlled 

by mathematical equations. 

Most applications of conceptual rainfall runoff models treat the model in a 

spatially lumped manner, assuming that the time series of climatic conditions and the 

model parameter values are consistent across the catchment. There have been 

implementations in more recent times of conceptual rainfall runoff models in semi-

spatially distributed and spatially distributed frameworks. In distributed application, the 

catchment is defined by grid cells or subcatchments within the catchment that are 

assigned the same rainfall runoff parameter values but different time series of climatic 

inputs so that different grid cells or subcatchments within the catchment produce different 

contributions to the overall runoff. This is effectively a series of lumped rainfall runoff 

models, with lumped sets of model parameters that are applied with spatially distributed 

rainfall. 

Conceptual rainfall-runoff models have been widely used in Australia for water 

resources planning and operational management because they are relatively easily 

calibrated and they provide good estimates of flows in gauged and ungauged catchments, 

provided good climate data is available. In Australia there are six widely used conceptual 

rainfall-runoff models that is AWBM (Boughton, 2004), IHACRES (Croke et. al, 2006), 

Sacramento (Burnash et. al, 1973), SIMHYD (Chiew et. al, 2002), SMARG (Vaze et. al, 

2006) and GR4J (Perrin et. al, 2003). The input data into the models are daily rainfall and 

PET, and the models simulate daily runoff. The models are typical of lumped conceptual 

rainfall-runoff models, with interconnected storages and algorithms that mimic the 

hydrological processes used to describe movement of water into and out of storages. They 

vary in terms of the complexity of the catchment processes that they try to simulate and 

in terms of the number of calibration parameters which vary from four to eighteen.  

 

2.6.3.1 IHACRES Model 

The mathematical representation are often used is a rainfall-runoff model because 

some available data for every catchments is only limited to daily temperature and rainfall 
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as well as some cases is stream discharge. Based on Wheater et.al (1993), rainfall-runoff 

models came into several classification which is metric models, conceptual models and 

physic-based models. Metric models is the simplest model using observed data which is 

rainfall and streamflow data to describe the response of catchment area. For conceptual 

models, it is complex description of the internal processes which that involved in 

determine the catchment response, can be more complex depending on the structure of 

the model. Whereas, physic-based models is a model which involve numerical solutions 

relate to relevant solutions of motion. Furthermore, the IHACRES model is efficient 

parametric rainfall-runoff model which has been applied to a number of large catchment 

area and covered a diverse range of climatologies. In a model structure, the IHACRES 

model is a hybrid conceptual-metric  model which used the simplest metric to minimize 

the risky parameter innate in hydrological models and to show the internal processes more 

detail simultaneously. Recently, the IHACRES_v2.0 has been released including 

modified loss module and a cross-correlation analysis tools, new fit of indicators and 

visualisation tools. In IHACRES, the non-linear loss module converts to rainfall into 

effective rainfall which is it eventually reach at the stream prediction point. For this non-

linear module, it is been used within IHACRES which increase its flexibility to obtain 

the impact of climate and the change of land use. For the linear module, the effective 

rainfall is transferred to stream discharge. It is routes the effective rainfall to stream by 

any arrangement of stores in parallel or series order. The configuration of stores is defined 

based on the time series of rainfall and discharge but it is either one, represent ephemeral 

streams, or two that allow baseflow, slowflow or quickly to be represent as in parallel 

order. 

In regionalisation, the IHACRES presented in several versions (Post and 

Jakeman, 1996; Sefton and Howarth, 1998; Kokkonen et. al, 2003) which is the main 

purpose is to estimate the parameters of models from an independent means for example, 

the features of landscape rather than directly from time series of rainfall-discharge. The 

efficiency of parametric of IHACRES which is about the parameters, influence to 

regionalisation problems to make it easier than complex model so that it can be related to 

the features of landscape. In addition to that, IHACRES model is one of the models that 

has been used by the Top-Down Working Group, as a part of the prediction in ungauged 

basins endeavour of the International Association of Hydrological Sciences (Littlewood 

et. al, 2003). Based on the resources, they have used IHACRES to model pluvial of 
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watershed in mountainous region (David Hutchinson, Paul H. Whitfield and Paola 

Allamano). The calibration was successful at 23 out of 31 of watershed has been selected 

for analysis. The result of the calibrations had an average coefficient of determination of 

0.60 in a range from 0.45 to 0.80. The lack of success in another 8 watershed may be due 

to failure of the representativeness of climate input. The main criteria to select the 

hydrometric stations is too much been disregard in mountain regions. There is a several 

alternative parameter which perform as almost the same and the parameter set are 

optimally-chosen eventhough IHACRES model is illiberal in structure. Moreover, in 

order to expose the extent which the variability controls and trend of the observed 

relationship between alternatives parameter sets and the physical catchments description 

(PCD), it useful to be plotted both variables, alternatives parameter sets against the PCDs. 

The model IHACRES are able to define the identification of unit hydrographs and 

component flows from rainfall, evapotranspiration and streamflow data is a simple model 

designed to avoid the problems described before. its subsequent development and 

application has demonstrated the following. Its subsequent development and application 

has demonstrated that it is simple, parametrically efficient and statistically rigorous as 

well as the results are data-based, and require no subjectively estimated parameter values. 

The model provides a unique identification of system response even with only a few years 

of input data (Jakeman et al, 1990). In addition, the model can be run on any size of 

catchment and the time steps are recommended is in Hourly for catchments up to 1 

𝑘𝑚2 while a daily time step is appropriate for larger catchments (Jakeman and 

Hornberger, 1993). The model efficiently describes the dynamic response characteristics 

of catchments (Jakeman et al., 1992; Sefton and Howarth, 1998). Statistical relationships 

may be developed relating these dynamic response characteristics to physical catchment 

descriptors (Post and Jakeman, 1996; Sefton and Howarth, 1998; Sefton et al., 1995). 

Such relationships provide a basis for regionalising results of sample catchments. It can 

also be used to assess changes in streamflow following a change of land-use in a 

catchment (Post et al., 1996). 
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2.6.4 Landscape Daily Hydrological Models 

Landscape Daily Hydrological models are based on the concept of landscape 

processes and they model the typical landscape processes using simplified physical 

equations such as VIC Model (Liang et. al, 1994), 2CSALT (Stenson et. al, 2011) and 

AWRA-L (Van Dijk, 2010). A catchment is usually conceptualised as a combination of 

landscapes which are delineated using some combination of outputs from digital 

elevation model analysis, underlying geology, soil types and land use. Hydrological 

models has been applied across many landscape types and broad spatial scales. At the 

broader spatial scales, it is often calibrated in forested headwaters. BROOK90 is a one-

dimensional process-based hydrological model that operates on daily time step and was 

originally developed for forested catchments in the north-eastern USA (Federer et al, 

2003). The model includes components for interception by a single layer canopy, snow 

accumulation and melt, direct evaporation from soil and snow and transpiration from 

single-layer canopy and multi-layered soil. In addition, The distributed Hydrology Soil 

Vegetation Model (DHSVM) is a watershed-scale hydrological model that operates at 

sub-daily to annual steps (Wigmosta et al, 1994, 2002). In DHSVM, it is composed of 

seven modules representing evapotranspiration, snow-pack accumulation and melting, 

canopy snow interception and release, unsaturated subsurface flow, saturated subsurface 

flow, surface overland flow and channel flow. DHSVM is frequently applied to evaluate 

forest management hydrological affects across variety of physiographical settings (Storck 

et al, 1998; Bowling and Lettenmaier, 2001). 

Another hydrological model is The Variable Infiltration Capacity (VIC) model. 

VIC is a macro-scale hydrological model that operates at daily to monthly time steps 

where it compliments global-scale general circulation models (GCMs) used for climate 

simulations and weather prediction (Liang et al, 1994, 1996). In VIC, it has includes 

simulated forest evapotranspiration, canopy storage, surface and surface runoff, 

aerodynamic flux and snow accumulation and melt. 

Thus, often these models have been designed to reproduce other variables in 

addition to streamflow as an example distributed evapotranspiration, soil moisture, 

recharge and salinity. As a result, it have a greater complexity to methods that target 

streamflow alone. 
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2.7 CONVENTIONAL STREAMFLOW MODEL 

The riskiness of hydrological impacts due to streamflow such as floods, tsunamis 

and high tide might be reduced if we have an effective streamflow prediction system. 

However, the dynamic of streamflow are highly non-linear model therefore, types of 

conventional linear streamflow model such as ARIMAX, ARMA or ARX are failed to 

make prediction. Many of neural networks with algorithms method and various structures 

are made to forecasting and modelling for non-linear streamflow. Based on a few 

researchers, they stated that parallel recursive prediction error algorithm gave the good 

result in presenting the modelling better than recursive prediction error by using 

Mutilayered Perceptron (MLP) network (Mashor, 1991; Karunithi et. al, 1994; Hsu et. al, 

1998; Phien and Ming-An, 1996; Harun et. al, 1996; Achela et. al, 1998; Zealand et. al, 

1998; Jaya, 2000; Mashor and Abdullah, 1990, 2000). However, using back propagation 

of MLP network still can be success based on the different data streamflow (Karunithi et. 

al, 1994; Harun et. al, 1996; Phien and Ming-An, 1996). In other contrast, a several types 

of streamflow modelling has been made at Pari River that is neural RBF using orthogonal 

least square algorithm and Hybrid Multilayered Perceptron (HMLP) and it shows the 

performance of HMLP network using recursive prediction error has a better 

generalisation properties and higher rate of learning compared to the performance of 

MLP using back propagation (Jayawardena, 2000; Mashor and Abdullah, 2000).  

Conventional streamflow model studies are based on off-line technique of 

streamflow. The performance of streamflow will forecast by off-line models and will be 

generated with time as the dynamic of streamflow will change with time. However, this 

difficulties can be control by on-line modelling because the on-line technique does not 

need collected data streamflow in order to fit the modelling. On-line forecasting system 

will own the flow sensor and measured it directly and the parameter will be estimated 

and the streamflow will be forecast simultaneously. The main studies is to show the 

capability of neural network of on-line (non-linear) streamflow which is Multilayered 

Perceptron Network (MLP), Hybrid Multilayered Perception Network (HMLP) and 

Radial Basic Function Network (RBF). HMLP and RBF has shown faster performance 

than MLP (Mashor, 2009). HMLP has been chosen for on-line non-linear modelling for 

streamflow in Pari River because HMLP more simple and has better general performance 

(Mashor, 2009). Based on 150 data samples, the forecasting performance up to 3-hours 
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lead time and after 300 data sample has been trained, it shows up to 24-hours lead time 

of modelling. In addition to that, a good match of peak flows, rising limbs ad recession 

limbs of actual flow as well as low flows shows is quite well. Neural network is to control 

the inconsistencies of conventional linear time models as well as convenient system could 

be built in order to forecast and simulate the streamflow efficiently. 

A Multilayered Perceptron Network (MLP) is a system of simple direct neurons 

called perceptrons. The concept of the idea of a solitary perceptron was presented by 

Rosenblatt in 1958. The perceptron determine a single output from multiple real-valued 

inputs by framing a linear according to its information weights and after that potentially 

putting the output through some nonlinear activation function. 

This kind of system is prepared with the backpropagation learning algorithm. 

MLPs are broadly utilized for pattern arrangement, recognition, prediction and 

estimation. Multilayer Perceptron can take care of issues which are not directly seperable. 

 

 



32 

 

 

 

METHODOLOGY 

3.1 Introduction 

The main aim of this study is to generate the future trend of long-term streamflow 

pattern with concerned to the climate change impact. SDSM model was used to predict 

the long term climate change patternand then the IHACRES model were applied to 

generate the streamflow pattern. IHACRES model has been used to achieve more 

accurate and less bias comparing between the modelled streamflow with the observed 

streamflow.  

The schematic flow of the methodology has been illustrated in Figure 3.1. In the 

beginning of the analysis, SDSM was used to perform the local pattern of climatic 

variability for future trend which is consists of rainfall intensity, temperature, dry and wet 

spell length. The software performs additional tasks for predictor variable in pre-

screening, the calibration of the model, basic diagnostic testing, statistical of analysis and 

graphing for climate data. In SDSM, NCEP predictor variables is used for this site which 

is available in the period of 1948 to 2015. Statistical Downscaling is help to downscale 

the actual or large atmospheric resolutions which is produced by GCM predictor variables 

into small scale resolutions and it focused on the local climate station.  

In another stage, IHACRES model is a catchment-scale rainfall-streamflow 

modelling was applied to characterise the relationship between streamflow and rainfall 

using the historical rainfall data and historical temperature data to predict future 

streamflow. In addition to that, IHACRES model can be amplify over in a range of spatial 

and temporal scale. The purpose of IHACRES model in this simulation is to identify the 

impacts of climate changes and what is the effects of land use can change the hydrological 

cycle in our daily life. 
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Figure 3.1: The schematic diagram of methodology of the study 
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3.2 Statistical Downscaling Model (SDSM) 

Statistical Downscaling Model 4.2 (SDSM) is a support tool for the assessment 

of regional climate change impacts. SDSM 4.2 is supported by the Environment Agency 

of England and Wales as part of the Thames Estuary 2100 project. Statistical downscaling 

methodologies have a few viable points of benefits over dynamical downscaling 

approaches. In this study, it can be figured and occur with statistical downscaling 

methodology which permit the setting up of climate change scenarios at daily time-scales 

apply by resolution of GCM output. In addition, by taking a concise outline of 

downscaling method, the structure and the operation of SDSM can be describe regarding 

by a several chore: 1) quality control and data transformation; 2) screening data for 

potential downscaling predictor variables; 3) model calibration; 4) weather generator for 

present climate information  using observed predictor variable; 5) statistical analysis for 

the change of climate with observed data; 6) generate graphing for model output; 7) 

generation of ensembles for future climate using GCM-derived predictor variables. The 

key elements of SDSM will be outlined using observed and climate model information 

for a theoretical station (Temerloh), looking at downscaled daily precipitation in the year 

of 1975 to 2004 and temperature arrangement in the year of 1984 to 2013 with future 

climate pattern in the year of 2040 to 2069. 

Inside the scientific classification of downscaling procedures, SDSM is ideal 

depicted as a crossover of the stochastic climate generator and exchange work techniques. 

This is on account of large-scale dissemination designs and environmental dampness 

factors are utilized to condition local-scale climate generator parameters as an examples 

precipitation event and power. Furthermore, stochastic methods are utilized to falsely 

blow up the fluctuation of the downscaled daily time series arrangement to better accord 

with precipitations. To date, downscaling calculation of SDSM has been connected to a 

host of meteorological, hydrological and ecological appraisals as well as scope of 

geological settings including Africa, Europe, North America and Asia. The 

accompanying areas diagram the product's seven center operations, along with the 

UKSDSM information document and prescribed record conventions. 
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Figure 3.2: SDSM model climate scenario generation methodology 
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3.2.1 Quality control and data transformation  

Couple of meteorological stations have complete and in addition totally correct 

educational records. Managing of missing and imperfect data is essential for most 

reasonable conditions. Some of the time it may in like manner be imperative to change 

data before model arrangement. SDSM enables both quality control and data change. 

 

3.2.2 Screening of Downscaling predictor variables  

Recognizing observational connections between gridded indicators, as an 

example, mean ocean level weight and single site predictands, (for example, station 

precipitation) is key to all measurable downscaling techniques. The principle reason for 

the Screen Variables operation is to help the client in the choice of fitting downscaling 

indicator factors. This is a standout amongst the most testing stages in the advancement 

of any factual downscaling model since the selection of indicators to a great extent 

decides the character of the downscaled atmosphere situation. The choice procedure is 

likewise convoluted by the way that the informative energy of individual indicator factors 

shifts both spatially and transiently. Screen Factors encourages the examination of regular 

varieties in indicator aptitude. 

 

3.2.3 Calibration and Validation Processes  

The Calibrate Model operation takes a User–specified predictand alongside an 

arrangement of indicator factors, and figures the parameters of different relapse 

conditions by means of a streamlining calculation (either double simplex of conventional 

minimum squares). The User indicates the model structure: regardless of whether month 

to month, regular or yearly sub–models are required; regardless of whether the procedure 

is unequivocal or contingent. In unequivocal models an immediate connection is accepted 

between the indicators and predictand (e.g., neighborhood wind rates might be an element 

of territorial wind stream files). In contingent models, there is a middle of the road 

procedure between provincial compelling and neighborhood climate (e.g., neighborhood 

precipitation sums rely on upon the event of wet–days, which thusly. 
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Based on the available observed data, two daily datasets on the year of 1984-1998 were 

selected for the calibration and year of 1999-2013 for validation of the temperature for 

maximum, mean and minimum. For the rainfall observed data, two daily datasets on the 

year of 1975-1989 were selected for the calibration and year of 1990-2004. In the study, 

SDSM using a monthly sub-model, was developed with the NCEP predictors that were 

selected during the screening process at each process at site in Temerloh. Explained 

Correlation of Coefficient (r) and Mean Square Error (MSE) were used as performance 

indicators during the calibration of SDSM. With the calibrated model, for maximum, 

mean and minimum temperature were simulated for 1984-1998 and rainfall for 1975-

1089 feeding the NCEP predictors. The mean values of these ensembles were used in this 

study. The model was validated with observed temperature data for 1999-2013 and 

observed rainfall data for 1990-2004 using daily and monthly. In the present study, two 

performance indicators which is Correlation of Coefficient (r) and Mean Square Error 

(MSE) were used for validation. R and MSE describe the accuracy of the model. For this 

study, these indicators were calculated for the Temerloh station and then the mean values 

of each indicator were obtained. In addition, the daily of maximum values of indicators 

calculated from simulated daily time series (NCEP) were plotted against the observed 

datasets.  

A simulation of mean daily and monthly rainfall, Tmax, Tmean and Tmin, during 

the calibration and validation of the SDSM time series were checked by using the 

coefficient of correlation (R) and root mean square error (RMSE), and it is defined as: 

𝑅 =  
∑  ( 𝑜𝑏𝑠 − 𝑜𝑏𝑠 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   )( 𝑝𝑟𝑒𝑑 − 𝑝𝑟𝑒𝑑 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑    )

∑√ ∑   ( 𝑄𝑜− 𝑄𝑀⃑⃑⃑⃑⃑⃑  ⃑ )2  ∑   (  𝑝𝑟𝑒𝑑 − 𝑝𝑟𝑒𝑑 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   )2    

      3.1 

 

RMSE =  √
(  𝑜𝑏𝑠− 𝑝𝑟𝑒𝑑 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ )

2
  

𝑛
                 3.2                               

    

In which, 𝑜𝑏𝑠  = observed data value; 𝑝𝑟𝑒𝑑  = predicted data value;  𝑜𝑏𝑠 ⃑⃑⃑⃑ ⃑⃑ ⃑⃑   = mean 

observed data value and  𝑝𝑟𝑒𝑑 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ = predicted mean data. The closer R value to 1 and 

RMSE value to 0, the predictions are better.                                                  
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3.4 Hybrid Conceptual Matrix Model-IHACRES Model 

IHACRES is a catchment-scale precipitation streamflow displaying technique. Its 

motivation is to help the hydrologist or water assets designer to portray the dynamic 

relationship between bowl precipitation and streamflow. The purpose of the application 

is to recognizable proof of unit hydrographs and continous time arrangement streamflow 

demonstrating. In addition, IHACRES model are able to make a predictiction on   

ecological change specifically in a hydrological administration studies. In a projection 

using IHACRES rainfall runoff model, the main three components structure of IHACRES 

which is 1) Data and its preparation; 2) calibration; and 3) simulation of the prediction 

streamflow pattern. Figure 3.3 are shown the basic concept of the streamflow approach 

methodology.  

 

 

 

 

 

 

 

(Source: Croke et al., 2005) 

Figure 3.3: Basic concept of IHACRES rainfall-runoff model methodology 
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where 
kr  refers to the observed rainfall (mm), a and b are the parameters of unit effective 

rainfall in a linear unit hydrograph module with b>0 and -1<a<0.  
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3.4.1 Data Requirements 

In the projection of IHACRES model, it is indicates the current state of the three 

time series that are imported which is observed rainfall, temperature and observed 

streamflow. The status column indicates the state of each time series so it must be in 

“synchronised” status which is means that the data has been imported and synchronised. 

The observed data for streamflow supposedly in a unit of cumecs for the time step of the 

time series. Moreover, in. The data contained within a raw data file must be in ASCII text 

format with with partitioned time series in sections isolated by commas (void area is 

disregarded). At the point when a raw data record is opened the top piece of the document 

shows up in the table in the Import File Data region of the Import Data Tool board. On 

the off chance that the Open is sucessful, the substance of the information document are 

shown. The Time Parameters range of the Import Data Tool board is utilized to determine 

the time parameters of the time series that has been imported. 

3.7 

3.8 

3.9 

3.10 
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The Start Time parameters allude to the time comparing to the first time step of a 

period arrangement that is being imported. The start time is determined by modifying the 

Year, Month, Day, Hour and Minute at the run boxes so as the right begin time is 

appeared. The Time Step parameter alludes to the time between each time step of a period 

arrangement that is being imported. The time step is indicated by choosing the units 

utilizing the rundown box (Minutes, Hours or Days) and determining a sum utilizing the 

content field.  

Based on the data required in the import procedure it is includes four main stages 

that must be satisfy. Firstly, select a cell on the Import File Data table that is inside the 

segment relating to the time series that will be imported. Clicking a table cell will choose 

the table section. A table cell that is chosen has a yellow fringe. Secondly, select the kind 

of the time series that is being imported by tapping on the proper tab as an example for 

the Obs. Rain it must be historical rainfall data whereas Temperature or Obs. Stream 

should be the historical streamflow. Thirdly, select the unit of the time series being 

imported utilizing the Unit list box. The substance of the Unit list box are reliant on the 

sort of the at present chose time series. Lastly, press the Import key. In the event that the 

select unit requires a catchment region esteem then a request can be made to determine 

the catchment region esteem (in sq km) utilizing a dialog box after the Import key. It is 

conceivable to import data for various data sorts from various raw data records. At the 

point when all time series have been initialised they will be synchronized. 

 

3.4.2 Calibration and Validation for IHACRES Model 

The very important phase in calibration is establishing the calibration period 

which is for this projection the selected period is from year of 2000 to 2004. Another 

phase that required in calibration is defining the linear module and non-linear module.  

Every calibration period tab has a Pre Grid Search tab which contains a section 

for each of the current non direct module parameters. The Classic Plus model has five 

parameters which is Mass Balance ( с ), Drying rate at reference temperature ( Ʈ𝑤  ), 

Temperature dependence of drying rate ( f ), Reference temperature ( tref ) and Moisture 

threshold for producing flow ( l ).  
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Using IHACRES model, the calibration and validation processes for the 

streamflow are analysed for the period 2000 to 2004. The best calibration was based on 

the higher value of Coefficient of Determination (𝑅2)  with the lower percentage of 

Average Relative Parameter Error (% ARPE)  based on the following equations: 

𝑅2 = 1 − 
∑   ( 𝑄𝑜− 𝑄𝑀 )2

∑   ( 𝑄𝑜− 𝑄𝑀⃑⃑⃑⃑⃑⃑  ⃑ )2
                                                                                 3.11 

 

% 𝐴𝑅𝑃𝐸 =  
1

𝑛
 ∑  

( 𝑄𝑜− 𝑄𝑀 )2

𝑄𝑜
 × 100                                                                3.12 

 

Where 𝑄𝑜  is refer to the observed streamflow, while 𝑄𝑀  is refer to the modelled 

streamflow whereas �⃑�  is the mean of observed streamflow and n is the total number of 

streamflow. 

 

3.4.3 Simulation for IHACRES Model 

The Simulation takes into consideration examination of the information made 

subsequently of running the IHACRES model utilizing the current determined 

calibrations. A calibration is a linear module calibration consolidated with a non-linear 

module calibration. Every calibration period has its own particular tab which gives get to 

the following after points of interest for every adjustment period that is Calibration, 

Simulation Summary, Statistic Summary, Charts and Hydrograph. IHACRES was 

integrated to simulate and generate the runoff behaviour under projected climatic 

changes. Various versions of the IHACRES model have also been used to address 

regionalisation issues (Post and Jakeman, 1996; Sefton and Howarth, 1998, Kokkonen et 

al, 2001). These issues require methods for estimating the parameters of models directly 

from rainfall-discharge time series. 
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In addition to the current simple refined instrumental variable (SRIV) method of 

parameter estimation (eg Jakeman et al., 1990), a method based on estimating 

hydrographs directly from streamflow data without the need for rainfall data has been 

developed (Croke, 2004). This enables higher resolution streamflow data to be used, 

reducing the loss of information which occurs when data is binned to a daily timestep. In 

order to use this model independent parameter estimation software, the IHACRES model 

needs to be able to be run from the command line. 
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RESULTS AND DISCUSSION  

4.1 Introduction 

 

In this chapter, the result of the study are presented and analysed in two main scopes as 

follows: 

a) The selection of predictors for the local weather in the Statistical Downscaling 

Model (SDSM)  

b) Projection of future climate variation of hydrological features which consist 

of precipitation and temperature. 

c) The generation of streamflow using IHACRES model. 

 

The prediction of climate future trend at the site study in Temerloh for the historical years 

in 1975 to 2004 and future years of 2040 to 2069 were produced by performing 

calibration and validation simulation to obtain the relationship between local climate 

pattern and information of the atmospheric features at specific sub-grid using SDSM. The 

SDSM model was generated the precipitation and daily temperature for a single 

hydrological station at Temerloh (3424081). Multiple regression technique was used in 

SDSM model to select he predictor-predictand relationship.  
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4.2 Temperature Simulation 

The simulation of temperature data were referred to the hydrological station at 

Sg. Pahang, Temerloh. It is assumed that the recorded temperature at the station could 

represent the district of Temerloh. The observed temperature data were simulated for the 

year 1984-2013. The climate simulation in the SDSM model started with the screening 

variables to evaluate the performance of the correlation among predictors-predictands. 

 

4.2.1 Predictor Selections for Temperature Projection 

The climate simulation in the SDSM model began with the process of screening 

variables to measure the performance in focused on correlation among predictors-

predictand relationships. In the SDSM model, the screening section involves 26 NCEP 

predictors and a local predictand which is analysed directly applied in the SDSM model. 

The purpose of the correlation is to screen the predictor-predictand relationship in a 

single-shot analysis.  

The simulation of historical temperature data refers to the meteorological station 

at Temerloh. Based on the temperature trend in Malaysia, the monthly temperature range 

is small and it has small variation at different areas. In addition, the historical temperature 

data was well correlated to the atmospheric characteristics and the selection of predictor 

can be easily done. Based on 26 predictors of NCEP, the best 5 predictors has been 

selected for projecting the temperature trend at the site study. Table 4.1 shows, the 

selected of 5 predictors which most affected to the pattern of projection for temperature 

trend at Temerloh. 
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Table 4.1:  The selected predictor variable in SDSM model of historical temperature 

 

No Predictor 

variable 

Predictor Description Correlation Values 

1 p500 500 hpa geopotential 

height 

0.055 

2 p_v Surface meridional 

velocity 

0.135 

3 r500 Relative humidity at 500 

hpa 

0.091 

4 temp Near surface air 

temperature 

0.196 

5 r850 Relative humidity at 850 

hpa height 

0.154 

 

 

4.2.2 Calibrated and Validated Results for Temperature Simulation 

In the calibration and validation process, each local predictand was used in 

calibrated for the first 15 years and validated for the remaining 15 years with the selected 

NCEP predictors to analyse the performance of the simulated result compared to the 

historical data. Lastly, the GCM-derived predictors were used to generate the daily 

weather series using as the same for the NCEP predictor variable for the future year. 

Figures 4.1 to 4.3 shows the simulated results produced calibration in the year of 

1984 to 1998 and validation in the year of 1999 to 2013 processes using predictors set 

from NCEP for three conditions which is maximum, mean and minimum temperature. 

The performance of calibration and validation results that were presented in Table 4.2 

consists of correlation coefficient (r) and mean absolute error (MAE). Based on the 

results, the MAE values were very small in the whole analysis, ranging from 0.0 to 0.6℃. 

Higher correlation values were estimated in the calibrated and validated results for 
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maximum, mean and minimum temperature simulation closer to 1.0. The value shows 

the calibrated and validated values were in a good agreement with historical records.  

The graphs disclose that the selected predictors were well correlated to the local 

predictand producing very close simulated results to historical temperature. However, the 

result suggest that the projection analysis results are reliable and acceptable at this phase. 

 

Figure 4.1: Results of calibration (1984-1998) and validation (1999-2013) 

maximum temperature at Temerloh station using SDSM model 

 

 

Figure 4.2: Results of calibration (1984-1998) and validation (1999-2013) mean 

temperature at Temerloh station using SDSM model 

 

25

27

29

31

33

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ax

im
u
m

 

te
m

p
er

at
u
re

 (
℃

)

Month

modelled (calibration) Historical

25

27

29

31

33

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ax

im
u
m

 

te
m

p
er

at
u
re

 (
℃

)

Month

modelled (validation) Historical

28

29

30

31

32

33

34

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
 

te
m

p
er

at
u
re

 (
℃

)

Month

Modelled (calibration) Historical

28

29

30

31

32

33

34

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
 

te
m

p
er

at
u
re

 (
℃

)

Month

Modelled (validation) Historical



47 

 

Figure 4.3: Results of calibration (1984-1998) and validation (1999-2013) minimum 

temperature at Temerloh station using SDSM model 

 

Table 4.2:  Performance of calibration and validation results of temperature using 

SDSM model 

 

 

4.2.3 Projection of Temperature Pattern in year 2040-2069 

Figure 4.4 to 4.6 designate the projection of temperature in a phase of maximum, 

mean and minimum during year of 2040 to 2069. The results were presented in the 

average of monthly temperature for the interval of 2040-2069. Results show that the 

average temperature will continue to increase for another 30 years. Based on the monthly 

average temperature, it shows that the highest temperature will rise on April which during 

the month it is hot and sunny season in the east coast states in Malaysia. Based on the 

Malaysian Meteorological Department, Malaysia report (MMD, 2016), it stated that the 
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temperature in the year of 2000 is 26.92℃ but it continued to increased in the year of 

2010 which is at 27.21℃. the increment will continue to rise about 1℃ to 3℃ for another 

decades. The increment of temperature may be affected the interchange of east coast 

monsoon. 

 Based on the projection for another 30 years, a safety precaution is highly 

recommended which it might be achieve at extreme temperature. Global climate is 

anticipated to keep on changing over this century and beyond. The extreme 

environmental change for a couple of past decades essentially depends on the measure of 

heat-trapping gases emmitted and how sensitive the Earth’s atmosphere to those 

emission. Based on the The Star newpaper (The Star, 2016) the Minister of Science, 

Technology and Innovation, Datuk Seri Madius Tengau says that the temperature in 

Pahang exceeding 37℃ at Batu Embun in the April. The El-Nino event in 1998 has 

contributed towards higher significant trend with sharp increased in annual mean 

temperature indicated. Therefore, the reduced demand of an open activities such as open 

burning and deforestation should be taken which is expected to inconsistent and possibly 

increased by changes of climate variable for future year. 

 

 

Figure 4.4: Projection of maximum temperature pattern with the GCM projection 

by RCP26, RCP45 and RCP 85 scenarios during 2040 to 2069 
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Figure 4.5: Projection of mean temperature pattern with the GCM projection by 

RCP26, RCP45 and RCP 85 scenarios during 2040 to 2069 

 

 

Figure 4.6: Projection of minimum temperature pattern with the GCM projection 

by RCP26, RCP45 and RCP 85 scenarios during 2040 to 2069 
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4.3.1 Predictor Selection for Rainfall Simulation 

The rainfall simulation was directed as the same station for the temperature 

simulation temperature at Temerloh. Furthermore, the analysis were started with the data 

screening to select the predictors affected the volume of rainfall. Then, the calibration 

and validation stages were conducted between the selected predictor with the rainfall 

station (local predictand) to investigate the performance of the model. The GCMs 

predictor were used to project and generate the local climate trend for the future year with 

consideration the future potential phase of greenhouse gases. 

The reliability of the simulation results in the SDSM model refer to the 

workability of the selected atmospheric variables with local climates in Temerloh station. 

Using directly analysis in SDSM model the relationship among 26 of NCEP predictors 

with the station of local predictand at Temerloh were discovered and presented in a single 

correlation matrix form by monthly. The selected predictors is chosen based on the 

correlation value in SDSM model. The most highest and consistent average range of 

correlation value for monthly is the most affected to the change of climate which is 

influenced to the amount of annual precipitation. No correlation were predicted among 

predictor-predictand in Temerloh station. Predictors which are not selected shows that 

these relationships are unnecessarily to associate them together in projection for the 

future climate trend because it is estimated to produce the least value of correlation and 

do not really contributed to the projection in rainfall stations therefore, the parameters 

were eliminated from the selection list. 

Five out 26 predictors has been chosen which it is yield a better correlation with 

all the predictands. In other words, this five predictands suggest that they have a potential 

accurately simulate the local climate change. Based on the predictors selected, a rainfall 

station were expected to accurately simulate the rainfall during calibration and validation 

processes. Table 4.3 shows the selected of 5 predictors which most affected to the pattern 

of projection for rainfall trend at Temerloh.   
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Table 4.3:  The selected predictor variable in SDSM model of historical rainfall with 

the predictor description 

 

 Those five parameters were used in the calibration and validation of the rainfall 

station using weather generator in the SDSM model. Figure 4.7 shows the results of 

calibration and validation for the rainfall station at Temerloh. 

 

4.3.2 Calibrated and Validated Results for Rainfall Simulation 

The simulation of rainfall data were referred to the hydrological station at Sg. 

Pahang, Temerloh. It is assumed that the recorded temperature at the station could 

represent the district of Temerloh. The observed temperature data were simulated for the 

year 1975-2004. The climate simulation in the SDSM model started with the screening 

variables to evaluate the performance of the correlation among predictors-predictands. 

 

No Predictor 

variable 

Predictor Description Correlation 

Values 

1 p_f Geostrophic airflow 

velocity near the surface 

0.006 

2 p_u Zonal velocity 

component near the surface 

0.024 

3 p_v Meridional velocity 

component near the surface 

0.016 

4 shum Near surface specific 

humidity 

0.044 

5 r850 Relative humidity at 

850 hpa height 

0.022 
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Figure 4.7: Results of calibration (1975-1989) and validation (1990-2004) of 

historical rainfall at Temerloh station using SDSM model 

 

 The simulated rainfall at Temerloh station is in close agreement with the historical 

rainfall. It yields minimal error in March which is less than 1.0mm/day. The simulated 

rainfall reflects the reliability of the model. In addition, the simulated rainfall is in good 

agreement with the modelled rainfall. However, the difference between between 

historical and modelled values is obvious during May, July and August which it range is 

between 0.0 to 2.0 mm/day. It is suspected that the error might influence the projection 

of future rainfall for Temerloh station. It is expected that the projected rainfall at 

Temerloh station would be underestimated. This is because, there is uncertainty rainfall 

of the historical data which is based on the Department of Irrigation and Drainage 

Malaysia (DID) at Temerloh station it recorded that there is zero amount of effective 

rainfall during the month. To overcome this problem, the nearest station has been chosen 

to in to get a reliable data using an arithmetic method. However, the results would not 

significantly affect the analysis at Temerloh station.  

 The performance of the predictors selection to inter-react with the local climate 

was evaluated using the statistical parameters that measure the monthly discrepancies 

between historical and modelled data at Temerloh rainfall station. The statistical 

parameters are mean absolute error (MAE). Table 4.4 summarizes the MAE results for 

monthly mean rainfall of modelled and historical values. The highest error is estimated 

in a month of which is the value is. The errors in other remaining months are slightly low 

which is in a range of 0.0 to 0.5 mm/day.  
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Table 4.4:  Performance of calibration and validation results of rainfall using SDSM 

model 

 

 

4.3.3 The Projection of Rainfall in year 2040-2069 

The analysis of climate change at Temerloh rainfall station is necessary in 

preparing for the reservoir management. The projection of rainfall in this area is used to 

estimate the rainfall volume that will be stored in the reservoir. Furthermore, the rainfall 

depth is also used in the rainfall-runoff model to generate the streamflow that will enter 

the reservoir storage. 

Figure 4.8 show the projection of rainfall for Temerloh station for the year of 

2040 to 2069 with the constant predictors used for GCM data type RCP26, RCP45 and 

RCP85 scenarios. The graph reveal that the selected predictors were well correlated to 

the local predictand, producing slightly closed simulated results to historical rainfall. 

However, the simulated rainfall of RCP26 scenario produce is lower than the historical 

rainfall for the overall range of months. Based on the graph, it shows the greatest percent 

of reduce is in a month of January. For the RCP 26, 45 and 85 it reduce at 26, 28 and 25 

percent respectively.  Whereas, the greatest increment from the historical data is in the 

month of October. The highest increment for the October is RCP 85 which is at 9.90 

percent. However, the error is in an acceptable range of 1.0 to 3.0 mm/day for every range 

of months. Therefore, these results suggest that the projection analysis results is reliable 

and acceptable at this stage. 

 

 Validation Calibration 

r 0.981 0.981 

MAE 3.772 3.772 
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Figure 4.8: Result of simulated rainfall at Temerloh station with the GCM 

projection by RCP26, RCP45 and RCP 85 scenarios during 2040 to 2069 

 

4.4 Inflow Prediction 

The inflow prediction were made for year 2040 until 2069 using IHACRES 

model. In general, the applicaton of rainfall-runoff model outputs of simulated value 

should be closer to observed data.  

 

4.4.1 Parameter Selection for Streamflow Simulation 

In preparing water balance for Temerloh station, predictions was made for the 

year of 2000 to 2004 for the time series of monthly runoff that will be used to simulate 

the reservoir storage. The streamflow is treated equally to the reservoir inflow. The 

IHACRES model were used for making the analysis of streamflow as it affected by the 

rainfall and streamflow pattern at the Temerloh station. Table 4.5 shows the parameters 

values which has been used in this study. 

 Based on the calibrated value of parameter in IHACRES model, it shows that the 

percentage of ARPE is quite high  which is at 7.74%. however, the values of correlation 

r of parameters is low which is at 0.66. It is shows that the is still in a good range of 

correlation parameters.  
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Table 4.5:  Calibration model parameters value for IHACRES model 

Parameters Values 

Mass Balance ( с ) 

Drying rate at reference temperature ( Ʈ𝑤 ) 

Temperture dependence of drying rate ( f ) 

Reference temperature ( tref ) 

Moisture threshold for producing flow ( l ) 

Correlation Coefficient ( r ) 

Average Relative Parameter Error (% ARPE) 

0.01 

4 

0 

20 

0 

          0.66 

          7.74 

 

 

4.4.2 Inflow Simulation using IHACRES Rainfall-Runoff Model 

Figure 4.9 shows the association between historical and modelled streamflow for 

the calibration and validation in the year of 2000 to 2004 results. Generally, the accuracy 

model prediction is an average except from the August of 2000 to the September 2004 

that was drastically decreases than historical record. The good performance of IHACRES 

model for runoff modelling is proved by the closed agreement between the results of 

historical and simulated runoff.  

Figure 4.10 shows the performance among simulated monthly inflow time series 

and the historical record in the year of 2000 to 2004 were compared. The purpose of the 

figure is to evaluate the performance of IHACRES model in the streamflow generation. 

The mean comparison based on Figure 4.10 shows the fluctuation with the observed data. 

The underestimated simulation shows in the February to April and the overestimated 

simulation stated in June to September and continue to underestimated in October to 

December. Based on the analyses the generated streamflow series using IHACRES model 

is unsatisfied as reliable for the future streamflow generation. 
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Figure 4.9: Result of calibration (2000-2002) and validation (2002-2004) for 

streamflow simulation using IHACRES model 

 

 

Figure 4.10: Comparison between mean observed and modelled result during 2000 

to 2004 

Based on the Figure 4.10, the overall trend of streamflow of the simulation is 

fluctuated during year 2000 to 2004. The highest percentage of error is during December. 

The flow of stream for modelled is reduced at 31% compared to observed streamflow. 

However, modelled streamflow were increased during September which is at 25%. This 

is shows that, analysis of the statistics for individual years shows that the model 

performed slightly poor.  
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4.4.3 Future Inflow Pattern 

The inflow time series was generated for the future year of 2040 to 2069 with the 

historical streamflow. The generated inflow time series is depends on the rainfall depth 

and the local temperature at Temerloh station area in the future using SDSM projection. 

The inflow is probably estimated to become higher at end of the century because the 

consistency of the increment of rainfall at this area was estimated due to the climate 

change impact. In addition, the monthly streamflow volume is un-synchronize affected 

by the local monsoon disturbance.  

 

    

Figure 4.11: The comparison between monthly generated inflow with the historical 

inflow at Temerloh station 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Introduction 

 

The study is to show the performance of the software which contributes to the 

advancement tools in the operations for a long term and maintainable in order to manage 

the flow of hydrological cycle at the site study. Therefore, a useful and accurate software 

is needed to perform a good projection of climate change so a step on safety precaution 

can be taken seriously. The Statistical Downscaling Model (SDSM) has contributed to 

the good projection of average rainfall and temperature of the site study. With supported 

of the results from SDSM, another software of rainfall-runoff model has been introduced 

to give a stronger and precise results which is IHACRES model. This chapter were 

discussed on the main conclusions for the study. Based on the discussion from the 

previous chapter, a several specific conclusions as listed in the following section. 
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5.2 Conclusions 

 

a) Statistical Downscaling model has been established a good selection predictors in 

data screening processes. Selection predictors is important in order to obtain a 

good results of calibration and validation. On the other aspect, each of the 

predictors has a different characteristics which is contributed to the change of 

climate impact. 

 

b) In SDSM this shows that, the model performed slightly better in the simulation 

period than in the calibration period. 

 

c) The inflow of projection by IHACRES model is found to be reliable and the 

model is simulated almost similarly to the historical. 

 

d) The catchment has a dry tropical climate, with rainfall dominated by high 

intensity events. This is the result of the lack of any baseflow component in this 

catchment 

 

e) The streamflow projection shows the increment  for each year and it is consistent 

to the pattern of rainfall and mean temperature from SDSM projection. 

 

f) The highest range of flow is in the month of November as expected based on the 

historical flow for the site study at Temerloh. 
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g) In addition, the functionality of the software has been increased through the 

inclusion of additional non-linear modules and alternative calibration techniques, 

as well as improved visualisation of data and modelled results. The model can be 

applied to arid and semi-arid catchments, though the length of the calibration 

period should be increased to accommodate the lower frequency of streamflow 

events. 

 

 

5.3 Recommendations 

 

Several guidance and recommendations were needed in improving the prediction of trend 

for the long term of climate change purpose; 

 

a) The methodology of this study are recommended to be analyse at several district 

or other near stations of hydrological in Pahang state in achieve a full view of the 

projection in a larger area. 

 

b) The raw material and data should be taken in details for the process of sorting and 

analysis the data in order to produce for a precise and accurate projection of the 

weather climate change. 
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APPENDIX A 

Results of calibration (1984-1998) and validation (1999-2013) maximum, mean and 

minimum temperature at Temerloh station using SDSM model 

 

 

 

 

 

25

27

29

31

33

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ax

im
u
m

 

te
m

p
er

at
u
re

 (
℃

)

Month

modelled (calibration) Historical

25

27

29

31

33

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ax

im
u
m

 

te
m

p
er

at
u
re

 (
℃

)

Month

modelled (validation) Historical

28

29

30

31

32

33

34

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
 

te
m

p
er

at
u
re

 (
℃

)

Month

Modelled (calibration) Historical

28

29

30

31

32

33

34

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
 

te
m

p
er

at
u
re

 (
℃

)

Month

Modelled (validation) Historical

25

27

29

31

33

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
in

im
u
m

te
m

p
er

at
u
re

 (
℃

)

Axis Title

Modelled (calibration) Historical

25

27

29

31

33

35

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
in

im
u
m

te
m

p
er

at
u
re

 (
℃

)

Axis Title

Modelled (validation) Historical



65 

Results of calibration (1975-1989) and validation (1990-2004) of historical rainfall 

at Temerloh station using SDSM model 
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APPENDIX B 

Projection of maximum,mean and minimum temperature pattern with the GCM 

projection by RCP26, RCP45 and RCP 85 scenarios during 2040 to 2069 
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Result of simulated rainfall at Temerloh station with the GCM projection by 

RCP26, RCP45 and RCP 85 scenarios during 2040 to 2069 
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APPENDIX C 

Result of calibration (2000-2002) and validation (2002-2004) for streamflow 

simulation using IHACRES model 

 

Comparison between mean observed and modelled result during 2000 to 2004 

 

The comparison between monthly generated inflow with the historical inflow at 

Temerloh station 
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