UMP Institutional Repository

Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm

Al-Saffar, Ahmed Ali Mohammed and Suryanti, Awang and Tao, Hai and Nazlia, Omar and Al-Saiagh, Wafaa and Al-bared, Mohammed (2018) Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm. PLoS ONE, 13 (4). pp. 1-18. ISSN 1932-6203

[img]
Preview
PDF
Malay sentiment analysis based on combined classification.pdf
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.

Item Type: Article
Uncontrolled Keywords: Malay sentiment; Senti-lexicon algorithm
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Faculty/Division: Faculty of Computer System And Software Engineering
Depositing User: Noorul Farina Arifin
Date Deposited: 04 May 2018 07:38
Last Modified: 04 May 2018 07:38
URI: http://umpir.ump.edu.my/id/eprint/21130
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item