THE UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH GROUP ENCAPSULATED LIME BOTTOM ASH COLUMNS

WONG SUK CHEE

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering.

(Supervisor's Signature)

Full Name: DR. MUZAMIR BIN HASANPosition: DIRECTOR OF CERRM/ SENIOR LECTURERDate: 31 MAY 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

A

(Student's Signature)

Full Name: WONG SUK CHEEID Number: AA 13203Date: 31 MAY 2017

THE UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH GROUP ENCAPSULATED LIME BOTTOM ASH COLUMNS

WONG SUK CHEE

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

MAY 2017

To my beloved family.

ACKNOWLEDGEMENTS

First and foremost, I would like to show my gratitude and thank to my supervisor, Dr. Muzamir Bin Hasan for his supervision, advice, guidance, encouragement and support in completing my research. His guidance helped me in all the time of research and writing of this thesis. I have been amazingly fortunate to have a supervisor who gave me the freedom to explore on my own, and at the same time the guidance to recover when my steps faltered.

In addition, I would like to give a big thank to Miss Haryani for providing information, guidance and advice in assisting me to complete my Final Year Project. Also, sincere thanks to all the technician assistants of Soil & Geotechnical Engineering Laboratory, Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP) for helping me in performing the laboratory works.

I would like to give a special thanks to my beloved friend, Kwan Hui Yee who always working together with me to complete our Final Year Project and sincerely giving a free hand, ideas and suggestion regarding to my Final Year Project. Besides, I would like to take this opportunity to give my warmest thanks to all who have helping me with my work have collaborated the ideas to complete my thesis.

Lastly, I owe my loving thanks especially to my beloved mother, father and siblings who always give me their supports, encouragement and pray for my success. Their understanding and encouragement gave me strength to concentrate on my studies and complete my Final Year Project on time.

TABLE OF CONTENT

DECI	LARATION	i
DEDI	ICATION	iii
ACK	NOWLEGMENT	iv
ABST	ГКАК	v
ABST	ГКАСТ	vi
TABI	LE OF CONTENT	vii
LIST OF TABLES		xii
LIST OF FIGURES		xiv
LIST OF SYMBOLS		
LIST	OF ABBREVIATION	xix
CHAI	PTER 1 INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	2

1.3	Objective	3
1.4	Scope of Study	3
1.5	Significant of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	7

2.2	Soft Soi	il	7
	2.2.1	Compressibility and Consolidation of Soft Clay	8
	2.2.2	Undrained Shear Strength of Soft Clay	9
2.3	Kaolin		9
	2.3.1	Physical Properties of Kaolin	9
	2.3.2	Mechanical Properties of Kaolin	11
2.4	Bottom	Ash	15
	2.4.1	Physical Properties of Bottom Ash	15
	2.4.2	Mechanical Properties of Bottom Ash	18
2.5	Quicklin	me	22
2.6	Small S	cale Modelling on Granular Column	24
	2.6.1	General Physical Modeling Work	24
	2.6.2	Column Installation Method	28
`	2.6.3	Undrained Shear Strength of Granular Columns	31
	2.6.4	Height Over Diameter of Columns - Critical Column Length	35
CHAP	FER 3 M	ETHODOLOGY	
3.1	Introduc	ction	36
3.2	Selectio Quicklin	on of Ground Improvement Technique with Addition of me	38
3.3	Selectio	on of Material	38
3.4	Sample	Collection	39

viii

3.5	Labora	tory Work for Determination of Physical and Mechanical	39
	Propert	ties	
	3.5.1	Hydrometer Test	41
	3.5.2	Standard Compaction Test	42
	3.5.3	Falling Head Permeability Test	43
	3.5.4	Specific Gravity Test	43
	3.5.5	Atterberg Limit Test	44
	3.5.6	Dry Sieve Test	45
	3.5.7	Constant Head Permeability	46
	3.5.8	Unconfined Compression Test	46
3.6	Reinfor Colum	rcing Kaolin with Group Encapsulated Lime Bottom Ash ns	48
	3.6.1	Kaolin Clay Samples	48
	3.6.2	Group Encapsulated Lime Bottom Ash Samples	53
	3.6.3	Installation of Group Encapsulated Lime Bottom Ash Columns	53
СНАР	TER 4 R	ESULT AND DISCUSSION	
4.1	Introdu	iction	55
4.2	Summa Geotex	ary of Kaolin, Quicklime, Bottom Ash and Non-Woven	55
4.3	Physica	al Properties	58
	4.3.1	Atterberg Limit Test	58

	4.3.2	Specific Gravity	59
	4.3.3	Particle Size Distribution	61
4.4	Mechan	nical Properties	64
	4.4.1	Standard Proctor Compaction Test	64
	4.4.2	Permeability	67
4.5	Reinfor Columr	cing Soft Clay with Group Encapsulated Lime Bottom Ash	68
	4.5.1	Stress – Strain Behavior under Axial Load	68
	4.5.2	Effect of Group Encapsulated Lime Bottom Ash Columns on Shear Strength	70
	4.5.3	Effect of Column Penetration Ratio	73
	4.5.4	Effect of Height over Diameter of Column Ratio	77
	4.5.5	Effect of Volume Replacement Ratio	80
4.6	Morpho	ological Properties	85

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Introduction	87
5.2	Conclusion	87
5.3	Recommendation	89

REFERENCES

91

APPENDIX

А	ATTERBERG LIMIT TEST	94
В	SPECIFIC GRAVITY RESULT	96
С	HYDROMETER TEST RESULT	99
D	SIEVE ANALYSIS TEST	98
E	COMPACTION TEST RESULT	101
F	CONSTANT HEAD TEST RESULT	108
G	FALLING HEAD TEST RESULT	109

LIST OF TABLES

Table 1.1	Summary of sample preparation	5
Table 2.1	Results of Atterberg limit and specific gravity of kaolin from previous works	10
Table 2.2	Results of standard compaction and falling head permeability of kaolin from previous works	12
Table 2.3	Results of soil classification and specific gravity of bottom ash from previous works	16
Table 2.4	Results of standard compaction, constant head permeability, direct shear strength of bottom ash from	19
Table 2.5	Model Testing Program	27
Table 2.6	Summary results of undrained shear strength of granular columns from previous works	34
Table 3.1	A list of tests and standards used according to type of	40
Table 3.2	Moisture content for kaolin specimens	52
Table 3.3	Density of various dimensions of bottom ash columns installed in kaolin specimens	54
Table 4.1	Summary of kaolin clay properties	56
Table 4.2	Summary of quicklime properties	56
Table 4.3	Summary of Tanjung Bin bottom ash properties	57
Table 4.4	Summary of polyster non-woven geotextile needlepunched properties (MTS 130)	57
Table 4.5	Comparison on the specific gravity of kaolinite from previous research works	60
Table 4.6	Comparison on the specific gravity of bottom ash from previous research works	61
Table 4.7	Comparison on the maximum dry density and optimum moisture content of kaolin S300 from previous research works	65
Table 4.8	Comparison on the maximum dry density and optimum moisture content of bottom ash from previous research works	66
Table 4.9	Results of constant head permeability of bottom ash from previous works	68

Table 4.10	Maximum deviator stress and axial strain values at different area replacement ratio and different height penetration ratio	69
Table 4.11	Result of unconfined compression test	71
Table 4.12	Improvement of shear strength	72
Table 4.13	The summary of the equation of correlation of shear strength and improvement shear strength for different types of ratio	84

LIST OF FIGURES

Figure 2.1	Malaysian Soft Clay Soils Distribution Map	8
Figure 2.2	The Atterberg limit (liquid limit, plastic limit and plasticity index) result of kaolin sample and addition 3% of Nano-kaolin	10
Figure 2.3	The compaction result of kaolin sample and addition 3% of Nano kaolin	12
Figure 2.4	The hydraulic conductivity result of kaolin sample and addition 3% of Nano-kaolin	13
Figure 2.5	The effect of kaolin on dry density and moisture content of clay	13
Figure 2.6	The permeability v/s time graph for various types of mix and pure kaolinite	14
Figure 2.7	The OMC v/s MDD graph for pure kaolinite and various type of mix	14
Figure 2.8	Particle size distribution of bottom ash	17
Figure 2.9	Particle size distribution of fly ash and bottom ash	17
Figure 2.10	Compaction curve of bottom ash	20
Figure 2.11	Cohesion and angle of internal friction of bottom ash using direct shear test	20
Figure 2.12	Compaction curves of Tanjung Bin bottom ash	21
Figure 2.13	Direct shear test of Vedanta, Jharsuguda	21
Figure 2.14	Effect of the addition of the lime on plasticity properties of London clay	23
Figure 2.15	Loading pattern and column arrangement	24
Figure 2.16	Load Tests on a group of stone columns. (a) Plan view of a group of stone columns with area replacement ratio among group=0.23; (b) schematic of the loading plate fitted with pressure cells; and (c) photographic view of load test	25
Figure 2.17	Details of model test studies for single and group column pattern	27
Figure 2.18	Footing, columns, and pressure cells: (a) single column; (b) multiple column	28
Figure 2.19	Installation of bottom ash in soft kaolin clay specimen	29

Figure 2.20	Granular column preparation steps a) steel pipe and header b) aggregate introducing into the hole c) location of single column d) location of group columns	30
Figure 2.21	Uniformity of sample and the quality of column formation: (b) preformed cavity for replacement method; (c) preformed cavity for multiple columns; (d) alignment of columns (multiple columns of five)	31
Figure 2.22	Deviator stress at failure for single column under uniform undrained loading. Hc/Hs, ratio of column length to sample height	32
Figure 2.23	Effect of ratio of column height to diameter on undrained shear strength	35
Figure 3.1	Flow chart of research methodology process	37
Figure 3.2	The condition of hydrometer in distilled water	41
Figure 3.3	Standard Compaction Test for bottom ash with quicklime	42
Figure 3.4	The condition of Specific Gravity Bottle inside vacuum desiccators for quicklime material	44
Figure 3.5	Products of Plastic Limit for quicklime material	45
Figure 3.6	Apparatus of Dry Sieve Test	46
Figure 3.7	Inserting specimen for Unconfined Compression Test	47
Figure 3.8	Apparatus for the preparation of soft homogenous kaolin specimens	48
Figure 3.9	Kaolin mixed with water poured into the mould	49
Figure 3.10	Customized mould set for 50 mm diameter and 100 mm height specimen	49
Figure 3.11	Kaolin compacted by pressing it from both ends by the customized cap	50
Figure 3.12	Holes were drilled using 10 mm (left) and 16 mm (right) diameter drill bits	50
Figure 3.13	Specimen was ready to be extruded out of the mould	51
Figure 3.14	Location of points for moisture content determination	52
Figure 3.15	Detailed columns arrangement for group lime bottom ash columns installed in clay specimens	54
Figure 4.1	The location of kaolin S300 in the plasticity chart (ASTM D2487)	58
Figure 4.2	The location of quicklime in the plasticity chart (ASTM D2487)	59

Figure 4.3	Particle size of distribution of kaolin S300	62
Figure 4.4	Particle size of distribution of Tanjung Bin bottom ash	63
Figure 4.5	Particle size of distribution of quicklime	63
Figure 4.6	Graph compaction test of kaolin S300	65
Figure 4.7	Graph compaction test of Tanjung Bin bottom ash	66
Figure 4.8	Graph compaction test of bottom ash with quicklime	67
Figure 4.9	Deviator stress versus axial strain at failure for 12.00 % and 30.72 % area replacement of lime bottom ash column at different penetration ratio	70
Figure 4.10	Shear strength versus height penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	73
Figure 4.11	Improvement shear strength with height penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	74
Figure 4.12	Correlation graph of shear strength with height penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	75
Figure 4.13	Correlation graph of improvement shear strength with height penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	76
Figure 4.14	Shear strength versus height over diameter of column ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	77
Figure 4.15	Improvement shear strength versus height over diameter of column ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	78
Figure 4.16	Correlation of shear strength versus height over diameter of column ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	79
Figure 4.17	Correlation of improvement shear strength versus height over diameter of column for group lime bottom ash columns with diameter 10 mm and 16 mm	80
Figure 4.18	Shear strength versus column volume replacement ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	81
Figure 4.19	Improvement shear strength versus column volume penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 m	81

Figure 4.20	Correlation of shear strength versus column volume penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	82
Figure 4.21	Correlation of improvement shear strength versus column volume penetration ratio for group lime bottom ash columns with diameter 10 mm and 16 mm	83
Figure 4.22	Morphology images of lime bottom ash by SEM at 20 μ m magnification	85
Figure 4.23	Morphology images of lime bottom ash by SEM at 100 μ m magnification	86

LIST OF SYMBOLS

A_c	Area of a column
A_s	Area of a sample
H_c	Height of a column
H_s	Height of a sample
V_c	Volumes of a column
V_s	Volumes of a sample
D_c	Diameter of a column
Si	Immediate settlement
Sc	Primary consolidation
τ	Shear strength of the soil
σ	Effective normal stress
ϕ	Cohesion
W_L	Liquid limit
W_p	Plastic limit
I_p	Plastic Index
Wopt	Optimum water content
q_u	Deviator stress
S_u	Undrained shear stress
ΔS_u	Improvement undrained shear strength
$ ho_{d}$	Dry density
R^2	Correlation cohesion

LIST OF ABBREVIATIONS

ACAA	American Coal Ash Association
AASHTO	American Association of State Highway and Transportation Officials
ASTM	American Society of Testing Material
BS	British Standard
BSCS	British Soil Classification System
EDS	Energy Dispersive Spectrometry
EPF	Employee Provided Fund
FHWA	Federal Highway Administration
MIT	Massachusetts Institute of Technology
ML	Low Plasticity Silt
USCS	Unified Soil Classification System
USDA	US Department of Agriculture
WV	West Virginia
XRF	X-Ray Fluorescence