Influence of viscous dissipation on the flow and heat transfer of a Jeffrey fluid towards horizontal circular cylinder with free convection: A numerical study

Syazwani Mohd Zokri a, Nur Syamilah Arifin a, Muhammad Khairul Anuar Mohamed a, Abdul Rahman Mohd Kasim a, Nurul Farahain Mohammad b and Mohd Zuki Salleh a,*

a Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
b Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

* Corresponding author: zuki@ump.edu.my

Abstract

This paper focuses on the numerical solution of free convection boundary layer flow past a horizontal circular cylinder in non-Newtonian Jeffrey fluid. The impact of viscous dissipation is discussed. The non-dimensional variables and non-similar transformations are implemented to transform the dimensional partial differential equations into two nonlinear partial differential equations (PDEs). Then, the implicit, unconditionally stable and well-tested Keller-box method is used to solve the PDEs by adding an extra boundary condition at infinity. The impacts of emerging parameters such as ratio of relaxation to retardation times, Deborah number, Prandtl number and Eckert number towards the quantities of physical interest are deliberated through graphical representation. The critical point for Prandtl number and ratio of relaxation to retardation times are investigated to achieve the physically acceptable solutions. It appears from this study that a rise in ratio of relaxation to retardation times trends to boost the velocity profile while declining the temperature profile. The opposite trend of graph is observed for the Deborah number where an increase in Deborah number give rise to decrement in velocity profile but increment in temperature profile. For increasing values of the Eckert number, the skin friction coefficient is found to increase while the Nusselt number is decreased. This study also reveals that for different values of Eckert number, the non-Newtonian Jeffrey fluid pronounces an effective heat transfer rate in comparison to Newtonian fluid.

Keywords: Non-Newtonian Jeffrey fluid, free convection, viscous dissipation effect, horizontal circular cylinder

© 2018 Penerbit UTM Press. All rights reserved

INTRODUCTION

The action of natural buoyancy forces on the fluid flow is termed as free or natural convection. Principally, the natural buoyancy forces is arising owing to the density gradients in the fluid that is induced by the difference in temperature (Kakac et al., 2013). In recent years, the study of non-Newtonian fluids in free convection has become a topic of interests among researchers. This interest is attributable to the complex nature of fluid used in most engineering applications such as food and polymer processing, cable coating, thermal oil recovery and fossil fuels. In polymer processing, the process of dip coating that involves heat transfer is essential for optimum production of polymer components. Such process is done by dipping the surface to be layered into polymer solution (Middleman, 1977; Roy, 1971).

Of all the non-Newtonian fluid models introduced, the Jeffrey fluid model is selected for the present investigation. This is because, this fluid model can be distinguished among the existing models by its ability of describing both the impact of relaxation and retardation. In fact, this fluid model is fundamentally upgraded from the Maxwell fluid model where the effect of relaxation time can only be described by the Maxwell fluid, but not the retardation times. It is worth mentioning that retardation time refers to the time required by the material to react to deformation. Furthermore, this non-Newtonian fluid can be differentiated with viscous fluid by its nonlinear relationship between shear stress and shear rate. This fluid also exhibits a relatively simple linear model that aids in numerical computation by means of time derivatives in place of convective derivatives. In this manner, the numerical computation is expected to be much easier (Rehman et al., 2015). This fluid model is also established by implementing the Jeffrey fluid term in the momentum equation of the classical Navier stokes (Newtonian) model.

It appears from the literature that the early study on the momentum equation has been done by Blasius (1907). Specifically, he focused on the forced convection boundary layer flow. His study was then continued by Frossling (1958) on the energy equation. Merkin (1976) performed numerical analysis on the free convection boundary layer problem with constant wall temperature. Soon after, Merkin and Pop (1988) tackled the same problem but with boundary condition of constant heat flux. Since then, countless investigations linked to this research field have been conducted. These investigations include the extension of existing mathematical models to different surface geometries, fluids, boundary conditions and the probable engagement
of some effects such as magnetohydrodynamic (MHD), viscous dissipation and many more. For example, the micropolar fluid with constant wall temperature has been utilised by Nazar et al. (2002). Molla et al. (2006; 2009) examined the existence of heat generation with constant wall temperature and constant heat flux, respectively. The problem of natural convection in viscous fluid with Newtonian heating has been solved by Salleh and Nazar (2010). Later, the impact of MHD in nanofluid was studied by Sheikholeslami et al. (2012). Kasim et al. (2013) studied the viscoelastic fluid past a horizontal circular cylinder with constant heat flux. Prasad et al. (2014) considered the presence of suction/injection effect in Jeffrey fluid past a permeable horizontal circular cylinder. Their study revealed that the existence of suction parameter for increasing Deborah number has reduced the skin friction coefficient and Nusselt number. Then, with the purpose of investigating the linear porous media and second-order Forchheimer drag effects, they extended the similar problem in a non-Darcy porous medium (Prasad et al., 2015). More recently, Al-Sharifi et al. (2017) scrutinized the model of Jeffrey fluid with the aligned magnetohydrodynamic effect and Newtonian heating boundary condition.

In relation to the existing publications, the primary study of viscous dissipation effect has been attempted by Gebhart (1962). His study suggested that for both cases of isothermal and uniform heat flux, the significant effect of viscous dissipation is observed at the wall of vertical surfaces. Using the same boundary condition, Vajravelu and Hadjinicolaou (1993) revealed that the temperature profile is raised due to the increasing effect of viscous dissipation, which can be measured using the dimensionless parameter, retardation number. Later, Yigga and Shankar (2013) and Azim (2014) examined this effect in an electrically conducting fluid. Mohamed et al. (2016a; 2016b) discussed this effect in viscous and nanofluid passing through horizontal circular cylinder. In consideration of Jeffrey fluid, recent examination of this effect was then tackled by Zakri et al. (2017) over a stretching sheet. It is found that the prominent viscous dissipation effect is identified in the device that functions at high rotative speed, for example rotating cavities processes.

Therefore, the present study intends to explore the effect of viscous dissipation on the free convection boundary layer flow embedded in Jeffrey fluid past a horizontal circular cylinder. Until now, the authors assured that the present study is yet unpublished by other works.

MATHEMATICAL FORMULATION

The Cauchy stress tensor, T is the constitutive equation for the model of Jeffrey fluid (Bird et al., 1977)

$$ T = -pI + S $$

where

$$ S = \frac{\mu}{1 + \lambda} (\dot{\gamma} + \lambda \dot{\gamma}) $$

Here, I is the identity tensor, p is the pressure, S is the extra stress tensor, λ is the ratio of relaxation to retardation times, μ is dynamic viscosity, λ is the retardation time and $\dot{\gamma}$ is the shear rate, where the dot on the quantity represents the time derivatives of the material. Further, both the shear rate and the gradient of shear rate take the following form:

$$ \dot{\gamma} = \nabla \mathbf{v} + (\nabla \mathbf{v})^T, \quad \nabla \mathbf{v} = \frac{d}{dt}(\gamma) $$

The above equations are introduced to relate the rate of stress and strain fields as well as to represent the behaviors of viscous and elastic of polymer melts that are widely used in polymer processing. In the present attempt, we intend to study the steady free convection boundary layer flow induced by a horizontal circular cylinder embedded in Jeffrey fluid with the impact of viscous dissipation. The physical model of the coordinate system is illustrated in Fig. 1. The x and y–

coordinates are taken from the lowest point and normal to the sideways of cylinder surface, respectively, with a, T_w and T_e representing the radius of circular cylinder, constant and ambient temperature. By incorporating the stress tensor of Jeffrey fluid and viscous dissipation effect in the momentum and energy equations, the following governing equations are obtained (Das et al., 2015; Mohamed et al., 2016a):

$$ \dot{u} - \frac{\partial p}{\partial x} + \frac{\partial T}{\partial y} = 0, $$

$$ \dot{\dot{u}} + \frac{\partial T}{\partial y} + \rho g = \frac{\partial}{\partial y} \left[\frac{\partial T}{\partial y} + \frac{\partial}{\partial y} \right] + \alpha \left[\frac{\partial^2 T}{\partial y^2} + \beta \left(\frac{\partial T}{\partial y} \right) \right], $$

$$ + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left[\frac{\partial T}{\partial y} + \frac{\partial}{\partial y} \right] + \alpha \left[\frac{\partial^2 T}{\partial y^2} + \beta \left(\frac{\partial T}{\partial y} \right) \right]. $$

From Eqs. (4) to (6), ∇ and \mathbf{v} are the components of velocity in x and y directions, where λ represents the ratio of relaxation to retardation times, λ corresponds to the retardation time, α indicates the thermal diffusivity, ν depicts the kinematic viscosity, β signifies the thermal expansion, T implies the local temperature, g is the gravity acceleration and C_p denotes the specific heat capacity at a constant pressure. Noticeably, there exist several mixed derivatives that represent the Jeffrey fluid term arising in Eq. (5). Among them, two derivatives are an order higher than the Newtonian model, for example $\frac{\partial^3 T}{\partial y^3}$ and $\mathbf{v} \left(\frac{\partial^2 T}{\partial y^2} \right)$. Moreover, the last term of Eq. (6) corresponds to the viscous dissipation effect. Further, the related boundary conditions are

$$ u(x, 0) = 0, \quad v(x, 0) = 0, \quad T(x, 0) = T_e \quad \text{at} \quad y = 0 $$

$$ u(x, \infty) \to 0, \quad v(x, \infty) \to 0, \quad T(x, \infty) \to T_w \quad \text{as} \quad y \to \infty $$

![Fig. 1 Geometry of the problem.](image-url)

The solution is looked via the following governing non-dimensional quantities

$$ u = \frac{a}{v} \frac{Gr^{1/2}}{T_w}, \quad v = \frac{a}{v} \frac{Gr^{1/2}}{T_w}, \quad x = \frac{\xi}{\alpha}, \quad y = \frac{Gr^{1/4} \sqrt{\gamma}}{a}, \quad \theta(\eta) = \frac{T - T_e}{T_w - T_e} $$

Substituting Eq. (8) into Eqs. (4) to (6), these equations give rise to the succeeding expressions:

$$ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, $$

$$ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, $$

$$ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. $$
and the local Nusselt number are sketched to investigate the effect of is indicates the thermal conductivity. Using Eqs. (Das et al. 2006), except otherwise declared.

It is also crucial to remark that Eqs. (14) and (15) are and reduced Nusselt number, the Eckert number, is eliminated. Thus, it is as tabulated in Tables 1 and 2, and temperature distribution is dependent on parameter , the Eckert number, and reduced Nusselt number, respectively while indicates the thermal conductivity. Using Eqs. (13) and (20), the reduced skin friction, and reduced Nusselt number, are:

\[
C_f \frac{Gr^{1/4}}{Pr^{1/2}} = \frac{x}{y}\left((1 - 0.01x^2) \frac{f''(x)}{2} + \frac{f''(x)}{2} - xf''(x) - f''(x) - f''(x)
ight)
\]

and

\[
Nu Gr^{1/4} = -\theta'\right vej(0, x, y), \quad q_e = -k(\frac{\partial\theta}{\partial y})_{y=0} \text{ imply the surface shear stress and heat flux, respectively}
\]

RESULTS AND DISCUSSION

Eqs. (14) and (15) along with the boundary conditions (16) are considered to obtain the numerical solutions. However, these equations are difficult to solve analytically due to their complexity and the highly nonlinear equations arising in the momentum and energy equations. Yet, a well-tested and unconditionally stable numerical approach, namely the Keller-box method has been used to generate the numerical results. Detail explanations of these steps can be found in the book written by Na (1980) and Cebeci and Bradshaw (1988).

A comparative study has been done on the variations of and against as tabulated in Tables 1 and 2, respectively. A great consistency of the present study with existing publications is achieved; thus, the present codes are assured to be used for obtaining numerical solutions. The numerical results are presented through graphs (Figs. 3 to 20) for several parameters, such as Deborah number , ratio of relaxation to retardation times , Eckert number , and Prandtl number , for which they are fixed as .

The profiles for velocity and temperature are portrayed in Figs. 3 to 8 for different values of , , and . In Figs. 3 and 4, the and profiles are sketched to investigate the effect of parameter . Initially, a rise in is noticed to boost the velocity profile; however, the velocity profile starts to decay to some extent near the freestream. An opposite trend is found in Fig. 4, where , the velocity profile is incomconsiderably reduced as increases. Physically, is dependent on the retardation time. An increase in signifies weaker retardation time while a decrease in indicates stronger retardation time. Such change in retardation time leads to the increment and decrement in the respective momentum and thermal boundary layer thickness.

The influence of on the velocity and temperature distributions are drawn in Figs. 5 and 6. In Fig. 5, as increases, the intense reduction has been perceived on the velocity component. In essence,
the viscoelasticity of material is presented by parameter λ_1, where it is actually combination of both viscous and elastic characteristics that will undergo deformation once the stress is applied. Due to this characteristic, either viscosity or elasticity increases, the velocity of fluid will always reduce. As such, a decrease in velocity profile is predicted (Hayat et al., 2011; Zin et al., 2017). Further, the insignificant effect of λ_2 has been observed at the surface ($y = 0$); yet, the effect of λ_2 is remarked at midway distance from the surface. Oppositely, a slight increase in temperature profile is seen in Fig. 6 along with the continuous degeneration of profile towards the freestream. It is essential to remark that the present trend of graphs attained are similar with documented result by Prasad et al. (2014).

In Figs. 7 and 8, both the velocity and temperature profiles are considerably depreciated for the increasing Pr, which in turn lead to the deterioration of momentum and thermal boundary layer thickness. At the midway distance from the surface of cylinder, it is visibly clear that both profiles encounter significant variations. Furthermore, in comparison to the small Pr, the thermal boundary layer for larger Pr is thinner. This is because, the thermal diffusivity is relatively lower for larger Pr, hence this results in the reduction of temperature profile.

Figs. 9 and 10 are plotted to identify the critical point for the Prandtl number Pr and ratio of relaxation to retardation times λ_1, with the purpose of achieving physically acceptable solution. The impact of λ_1 and Pr on the $Nu_{Gr}^{1/4}$ at stagnation point, $x = 0$ is illustrated in Fig. 9. It is observed that as Pr approaches the critical values, Pr_c a strong increment of heat transfer rate is detected. Furthermore, as λ_1 gets larger, the Pr_c becomes smaller. For $\lambda_1 = 0.1, 1.0$ and 5.0, the critical points are $Pr_c = 1.1666, 04641$ and 0.2397, respectively. Thus, this graph suggests that a physically acceptable solution can be accomplished when Pr is lower than Pr_c, when subjected to different λ_1. Meanwhile, the effect of λ_2 and λ on the $Nu_{Gr}^{1/4}$ is shown in Fig. 10, where the acceptable physical solution of λ is highly dependent on the λ_2. The critical points obtained are $\lambda_2 = 0.3801, 0.7580$ and 2.1386 for the respective values of $\lambda_2 = 0.1, 1.0$ and 5.0, which means the higher values of λ_2 constitute to the larger values of the critical point, λ_c.

The variations of $C_{f,Gr}^{1/4}$ and $Nu_{Gr}^{1/4}$ towards different value of Pr and Ec are plotted in Figs. 11 to 14. It is perceived that the $C_{f,Gr}^{1/4}$ is decreasing due to the increasing value of Pr as depicted in Fig. 11. This is because, the fluid is more viscous for a larger Pr and highly viscous fluid will oppose the fluid flow while at the same time lessening the shear stress. On the other hand, Fig. 12 reveals that the $Nu_{Gr}^{1/4}$ has increased and this is attributable to the increase in Pr, thus sequentially enhancing the distribution of heat transfer in the fluid. From Fig. 13, the graph of $C_{f,Gr}^{1/4}$ at the lower stagnation point is observably unique for dissimilar value of Ec. Even so, a slight influence of Ec is spotted far from the stagnation point. Meanwhile, the impact of Ec is trivial at lower stagnation point as displayed in Fig. 14. Nonetheless, as x increases, the $Nu_{Gr}^{1/4}$ has started to receive considerable influence from Ec where the $Nu_{Gr}^{1/4}$ is observably diminished as Ec increases. Furthermore, the velocity and temperature distributions of various Ec demonstrated a unique value, thus the existence of Ec is concluded as to not displaying any changes. Mathematically, this outcome happens because of the termination of Ec at $x = 0$. A study documented by Mohamed et al. (2016b) has emphasised the similar result.

Table 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>0.4151</td>
<td>0.4148</td>
<td>0.4145</td>
<td>0.4139</td>
<td>0.4121</td>
<td>0.4120</td>
</tr>
<tr>
<td>$\pi/6$</td>
<td>0.7558</td>
<td>0.7542</td>
<td>0.7539</td>
<td>0.7528</td>
<td>0.7538</td>
<td>0.7507</td>
</tr>
<tr>
<td>$\pi/3$</td>
<td>0.9579</td>
<td>0.9545</td>
<td>0.9541</td>
<td>0.9526</td>
<td>0.9563</td>
<td>0.9554</td>
</tr>
<tr>
<td>$2\pi/3$</td>
<td>0.9756</td>
<td>0.9698</td>
<td>0.9696</td>
<td>0.9678</td>
<td>0.9743</td>
<td>0.9728</td>
</tr>
<tr>
<td>π</td>
<td>0.7822</td>
<td>0.7740</td>
<td>0.7739</td>
<td>0.7718</td>
<td>0.7813</td>
<td>0.7761</td>
</tr>
<tr>
<td>π</td>
<td>0.3391</td>
<td>0.3265</td>
<td>0.3264</td>
<td>0.3239</td>
<td>0.3371</td>
<td>0.3302</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4214</td>
<td>0.4214</td>
<td>0.4214</td>
<td>0.4216</td>
<td>0.4214</td>
<td>0.4214</td>
</tr>
<tr>
<td>$\pi/6$</td>
<td>0.4161</td>
<td>0.4161</td>
<td>0.4161</td>
<td>0.4163</td>
<td>0.4163</td>
<td>0.4162</td>
</tr>
<tr>
<td>$\pi/3$</td>
<td>0.4007</td>
<td>0.4005</td>
<td>0.4005</td>
<td>0.4006</td>
<td>0.4008</td>
<td>0.4009</td>
</tr>
<tr>
<td>$\pi/2$</td>
<td>0.3745</td>
<td>0.3741</td>
<td>0.3740</td>
<td>0.3742</td>
<td>0.3744</td>
<td>0.3743</td>
</tr>
<tr>
<td>π</td>
<td>0.3364</td>
<td>0.3355</td>
<td>0.3355</td>
<td>0.3356</td>
<td>0.3364</td>
<td>0.3363</td>
</tr>
<tr>
<td>π</td>
<td>0.2825</td>
<td>0.2811</td>
<td>0.2811</td>
<td>0.2811</td>
<td>0.2824</td>
<td>0.2814</td>
</tr>
<tr>
<td>π</td>
<td>0.1945</td>
<td>0.1916</td>
<td>0.1917</td>
<td>0.1912</td>
<td>0.1939</td>
<td>0.1932</td>
</tr>
</tbody>
</table>
The impacts of both Pr and Ec on the variations of $C_r \cdot Gr^{1/4}$ and $Nu_c \cdot Gr^{-1/4}$ are illustrated in Figs. 15 and 16. From Fig. 15, it is seen that the increment of $C_r \cdot Gr^{1/4}$ is greater for $Pr = 0.71$ as compared to $Pr = 7$ when $Ec = 0.1$ and 0.5. In contrast, Fig. 16 exhibits the opposite trend of the graph, wherein the $Nu_c \cdot Gr^{-1/4}$ is increased significantly as a result of the increasing Pr. Correspondingly, higher value of Pr, i.e. $Pr = 7$ induces the betterment of heat transfer rate, owing to huge kinetic energy offered from bigger Pr.

Figs. 17 and 18 demonstrate the impact of different Pr and λ_2 on $C_r \cdot Gr^{1/4}$ and $Nu_c \cdot Gr^{-1/4}$ at two different positions of x. Clearly, with an increase in Pr, the value of $C_r \cdot Gr^{1/4}$ in Fig. 17 is decreasing at $x = \pi/6$. At $x = 0$, it is found that the graph of $C_r \cdot Gr^{1/4}$ does not exist. Further, as Pr increases, the graph plotted in Fig. 18 depicts the increasing value of $Nu_c \cdot Gr^{-1/4}$ both at $x = 0$ and $\pi/6$. It is noteworthy from the figure that the effective heat transfer rate occurs at $x = 0$.

The effects of Newtonian and non-Newtonian Jeffrey fluid for increasing value of Ec on $C_r \cdot Gr^{1/4}$ and $Nu_c \cdot Gr^{-1/4}$ are examined in Figs. 19 and 20. From Fig. 19, the values of $C_r \cdot Gr^{1/4}$ for Newtonian fluid is higher in comparison to the non-Newtonian Jeffrey fluid. Meanwhile, Fig. 20 is contradictory to Fig. 19 where the values of $Nu_c \cdot Gr^{-1/4}$ for the non-Newtonian Jeffrey fluid are dominant, indicative of the most effectual cooling and heating processes.
Fig. 10 Variations of $\frac{1}{4}x Nu Gr^{-\frac{1}{4}}$ for several values of λ_2 and λ at $x = 0$.

Fig. 11 Variations of $\frac{1}{4}x C Gr^{-\frac{1}{4}}$ for several values of Pr.

Fig. 12 Variations of $\frac{1}{4}x Nu Gr^{-\frac{1}{4}}$ for several values of Pr.

Fig. 13 Variations of $\frac{1}{4}x C Gr^{-\frac{1}{4}}$ for several values of Ec.

Fig. 14 Variations of $\frac{1}{4}x Nu Gr^{-\frac{1}{4}}$ for several values of Ec.

Fig. 15 Variations of $\frac{1}{4}x C Gr^{-\frac{1}{4}}$ for several values of Pr and Ec.

Fig. 16 Variations of $\frac{1}{4}x Nu Gr^{-\frac{1}{4}}$ for several values of Pr and Ec.

Fig. 17 Variations of $\frac{1}{4}x C Gr^{-\frac{1}{4}}$ for several values of Pr and λ_2.
For several values of Pr and λ, the graph of $C_{Gr}^{1/4}$ does not exist at $x = 0$, while at $x = \pi/6$, the $C_{Gr}^{1/4}$ is noticeably decreased.

For increasing Pr and λ, the $Nu_{Gr}^{1/4}$ is increased. However, the increase in $Nu_{Gr}^{1/4}$ is pronounced at $x = 0$ rather than $x = \pi/6$.

For increasing Ec, the rate of heat transfer of non-Newtonian Jeffrey fluid is more effective than Newtonian fluid.

ACKNOWLEDGEMENT

This study is fully funded by research grants (RDU170358, PGRS1703100 and RDU160330) received from the Universiti Malaysia Pahang. The authors are gratefully acknowledged the financial support.

REFERENCES

The important findings of this study can be concluded as follows:

- The values of Pr are significantly dependent on λ at the lower stagnation point of the cylinder.
- The values of λ are strongly dependent on λ at the lower stagnation point of the cylinder.
- Increasing the value of Pr will decrease the $f'(y)$, $\theta(y)$ and $C_{Gr}^{1/4}$ while increasing the $Nu_{Gr}^{1/4}$.
- The $C_{Gr}^{1/4}$ rises with the rising value of Ec while declining for rising value of Pr.
- For increasing values of both Pr and Ec, the $Nu_{Gr}^{1/4}$ is strongly decreased.

