Superconducting and Electrical Transport Properties of (Bi1.4Pb0.6)Sr2Ca2Cu3O10 with

Nano-Co_{0.5}Ni_{0.5}Fe₂O₄ Addition

<u>M. Hafiz</u>¹, R. Abd-Shukor²

¹Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
²School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

The effects of nano-CoFe₂O₄ addition on the superconducting and transport properties of (Bi_{1.4}Pb_{0.6})Sr₂Ca₂Cu₃O₁₀ high temperature superconductor (Bi-2223) were studied. Bi-2223 superconductor samples were prepared using co-precipitation method. 0.01 to 0.05 wt.% of Co_{0.5}Ni_{0.5}Fe₂O₄ magnetic nanoparticles with average size of 20 nm was added to enhance the flux pinning and improve the transport properties of the Bi-2223 superconductor [1-2]. The Co_{0.5}Ni_{0.5}Fe₂O₄ particle size is larger than the coherence length, ξ and smaller than the penetration depth, λ of Bi-2223 (ξ = 2.9 nm, λ = 60 – 1000 nm for Bi-2223 [3]). The critical temperature (T_c), critical current density (J_c), phase formation and microstructure of the samples were investigated. As shown in Fig. 1, all samples with addition of nano-Co_{0.5}Ni_{0.5}Fe₂O₄ showed higher J_c compared to non-added sample. The sample with 0.01 wt.% addition showed the highest T_c and J_c . A higher amount of addition (>0.01 wt.%) leads to degradation of both T_c and J_c . This study shows that small addition of Co_{0.5}Ni_{0.5}Fe₂O₄ nanoparticles can effectively enhance the transport critical current density in Bi-2223 superconductor.