FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH CIRCULAR WEB OPENING

NUR IZZAH BINTI MOHD NASRI

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering.

(Supervisor's Signature) Full Name : MOHAMMAD AMIRULKHAIRI BIN ZUBIR Position : LECTURER Date : 19 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NUR IZZAH BINTI MOHD NASRI ID Number : AA13143 Date : 19 JUNE 2017

FLEXURAL BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH CIRCULAR WEB OPENING

NUR IZZAH BINTI MOHD NASRI

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

In the name of Allah S.W.T, the Most Gracious, the Ever Merciful. Praise is to Allah, Lord of the Universe and Peace and Prayers be upon His final Prophet and Messenger Muhammad S.A.W. I would like to give my gratitude to Allah S.W.T for all his blessing to me to complete my final year project.

I wish to express my sincere appreciation to my supervisor, Encik Mohammad Amirulkhiri bin Zubir for continuous encouragement, guidance, critics and constant support in making this research completed. I appreciate his consistent support from the first day I met and discuss about this research.

Very special thanks goes out to all technician of the Concrete Laboratory of Civil Engineering and Earth Resources UMP, En Fadhil, En Fakhri, En Kashah, En Kamarul, En Zul Iskandar and En Hafiz for their invaluable guidance and technical advice making this study possible. Their patience and support helped me overcome some crisis situations and complete the laboratory successfully.

Apart from that, I also would like to thank to all my beloved friends Iffah, Norlila, Nurliana, Azyyatul and Amirol who always willing to help me during the research work especially the experimental work. Besides that, thanks to all beloved friends for sharing their precious knowledge, constructive suggestion and useful advises with me to completing this research.

Last but not least, my sincere thanks also go to my family for their love, dream and sacrifice throughout my life. I cannot find the appropriate words that could describe my appreciation for their devotion, support and faith in my ability to attain my goals.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	STRAK	iii
ABS	STRACT	iv
TAB	BLE OF CONTENT	v
LIST	T OF TABLES	viii
LIST	T OF FIGURES	ix
LIST	T OF SYMBOLS	х
LIST	T OF ABBREVIATIONS	xi
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background of the Study	2
1.3	Problem Statement	3
1.4	Research Objective	3
1.5	Scope of Study	3
1.6	Significance of Study	4
1.7	Conclusion	4
CHA	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Beam with Web Opening	6

2.3	Classification of Opening	6
2.4	Behaviour Beam in Shear	8
2.5	Failure Mode	10
	2.5.1 Beam Type Failure	10
	2.5.2 Frame Type Failure	11
2.6	Performance of Beams with Openings	12
2.7	Conclusion	13
CHAI	PTER 3 METHODOLOGY	14
3.1	Introduction	14
3.2	Flow Chart	15
3.3	Material Characteristics	15
	3.2.1 Concrete	16
	3.2.2 Concrete Mix Design	16
	3.2.3 Reinforcement Bar	17
3.4	Test Specimen	17
3.5	Preparation of Speciment	18
3.6	Curing	19
3.7	Laboratory Testing	20
	3.7.1 Compressive Strength Test	20
	3.7.2 Flextural Test	22
3.8	Conclusion	22
CHAI	PTER 4 RESULTS AND DISCUSSION	23
4.1	Introduction	23
4.2	Compressive Test	24

vi

4.3	Load Theory (Based on Eurocode 2)	24
	4.3.1 Specification	25
	4.3.2 Design Analysis	27
4.4	Deflection Theory (Based on ACI 318)	29
4.5	Flexural Test	32
	4.5.1 Load Deflection Behaviour	32
4.6	Crack Pattern	35
4.7	Conclusion	38
CHAI	PTER 5 CONCLUSION	39
5.1	Introduction	39
5.2	Conclusion	39
5.3	Recommendation	41
REFE	CRENCES	42
APPE	CNDIX A SAMPLE APPENDIX A	44
APPE	CNDIX B SAMPLE APPENDIX B	45
APPENDIX B SAMPLE APPENDIX C		
APPE	CNDIX B SAMPLE APPENDIX D	51
APPE	NDIX B SAMPLE APPENDIX E	52

LIST OF TABLES

Table 3.1	Different types of test conducted in this project	14
Table 3.2	Test matrix	17
Table 4.1	Result of compressive test for 7 days of curing	24
Table 4.2	Result of compressive test for 28 days of curing	24
Table 4.3	Theoretical deflection data	32
Table 4.4	Result of load-deflection	35

LIST (ЭF	FIG	URES
--------	----	-----	------

Figure 2.1	Typical shear failure of a beam without shear reinforcement (Mansur, 1998).	8
Figure 2.2	Reinforcement schemes for beams with opening (Salam, 1997).	9
Figure 2.3	Shear failure of Beam B4 at the throat section (Salam, 1977).	10
Figure 2.4	Beam-type failure	11
Figure 2.5	Frame-type failure	11
Figure 3.1	Schematic diagram showing the summary of research methodology	15
Figure 3.2	Circular opening were formed before casting by using different size opening	18
Figure 3.3	Water curing tank	19
Figure 3.4	Curing with wet sacks	20
Figure 3.5	Compressive testing machine	21
Figure 3.6	Apparatus for cube test	21
Figure 3.7	Illustration arrangements of load for Flexural Test	22
Figure 4.1	Singly reinforced section with rectangular stress block	25
Figure 4.2	Load vs deflection for all beams between theoretical and experimental	33
Figure 4.3	Load vs deflection with different size opening	34
Figure 4.4	Crack pattern of beams	36

LIST OF SYMBOLS

Load
Cross sectional area
Effective depth
Stress in concrete in compression
Stress in steel in tension
Area of reinforcement
Coefficient for steel
Moment of Inertia
Height
Concrete cover
Width
Diameter
Millimetre
Kilogram
Mega Pascal
Kilo Newton
Newton
Newton per millimetre square
Kilo Newton metre
Giga Pascal

LIST OF ABBREVIATIONS

American Society for Testing And Materials
American Concrete Institute
Indian Standard
Department of Environment
British Standard
Potential of Hydrogen
Control beam
Beam with 100 mm opening
Beam with 80 mm opening
Beam with 60 mm opening