FINITE ELEMENT ANALYSIS OF RC BEAMS WITH BAMBOO FIBER REINFORCED COMPOSITE PLATE USING ABAQUS

YIP WAI KIT

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of Bachelor of Engineering with Honours Civil Engineering.

(Supervisor's Signature) Full Name : DR. CHIN SIEW CHOO Position : SENIOR LECTURER Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : YIP WAI KIT ID Number : AA13198 Date :

FINITE ELEMENT ANALYSIS OF RC BEAMS WITH BAMBOO FIBER REINFORCED COMPOSITE PLATE USING ABAQUS

YIP WAI KIT

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

I am very grateful and would like to take this opportunity to express my deepest gratitude to those who helped me during the process of completing this final year project especially my supervisor, Dr. Chin Siew Choo. Her professional advices as well as continuous guidance, constant support and motivation are valuable in making this research a success. I am always impressed by her outstanding and professional conduct with her strong conviction for engineering science. Her consistent support and supervision have given me a lot of insight in this research. I am truly thankful for her tolerance of my careless mistakes and endless commitment in making this research possible as well.

My most sincere gratitude also goes to all my friends, research partners and lecturers who have been helping me throughout the whole semester to make my time at UMP a pleasant and unforgettable one. Their comments and suggestions are vital for making this research a success. Besides that, I would like to specially thanks and acknowledge Dr. Sharifah Maszura binti Syed Mohsin as well as Dr. Lim Kar Sing who have share their knowledge and advices which motivated me a lot for this research.

Last but not least, my upmost appreciation to my parents for their loves and supports who sacrifice themselves to support and motivate me during my hardest time. I would not have been able to accomplish my targets without their encouragements. I am deeply indebted to everyone who has been helping me throughout my study. Thank you.

TABLE OF CONTENT

DEC	CLARATION	
TITI	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
TAB	BLE OF CONTENT	V
LIST	Γ OF TABLES	viii
LIST	Γ OF FIGURES	ix
LIST	Γ OF SYMBOLS	xiii
LIST	Γ OF ABBREVIATIONS	xiv
CHA	APTER 1 INTRODUCTION	1
1.1	BACKGROUND OF STUDY	1
1.2	PROBLEM STATEMENT	2
1.3	OBJECTIVES OF STUDY	3
1.4	SCOPE OF STUDY	3
1.5	SIGNIFICANCE OF STUDY	4
CHA	APTER 2 LITERATURE REVIEW	5
2.1	INTRODUCTION	5
2.2	RC BEAMS WITH OPENINGS	5
2.3	STRENGTHENING USING FIBER (EXPERIMENTAL)	6
	2.3.1 Synthetic Fiber	7

	2.3.2	Natural Fiber	9
2.4	STRE	NGTHENING USING FIBER (FINITE ELEMENT ANALYSIS)	11
	2.4.1	Synthetic Fiber	11
	2.4.2	Natural Fiber	15
CHA	PTER 3	3 METHODOLOGY	17
3.1	INTR	ODUCTION	17
3.2	RESEARCH FLOWCHART		18
3.3	FINIT	E ELEMENT ANALYSIS (ABAQUS)	19
	3.3.1	Geometrical Modelling	19
	3.3.2	Creating Part	21
	3.3.3	Material Properties	31
	3.3.4	Model Assembly	39
	3.3.5	Interaction and Boundary Conditions	49
	3.3.6	Meshing	55
	3.3.7	Analysis	57
	3.3.8	Post Processing	60
CHA	PTER 4	RESULTS AND DISCUSSION	63
4.1	INTR	ODUCTION	63
4.2	BEHA	VIOUR IN FLEXURAL	63
	4.2.1	Load-Deflection Behaviour	63
	4.2.2	Crack Pattern	67
	4.2.3	Strain Contour	71
4.3	BEHA	AVIOUR IN SHEAR	74
	4.3.1	Load-Deflection Behaviour	74

	4.3.2	Crack Pattern	76
	4.3.3	Strain Contour	77
4.4	VALI	DATION BETWEEN FINITE ELEMENT ANALYSIS RESULTS	AND
	EXPE	RIMENTAL RESULTS	79
	4.4.1	Behaviour in Flexural	79
	4.4.2	Behaviour in Shear	85
4.5	SUM	MARY OF RESULTS	88
CHA	PTER 5	5 CONCLUSION	89
5.1	INTR	ODUCTION	89
5.2	CON	CLUSION	89
5.3	RECO	OMMENDATIONS FOR FUTURE WORKS	91
REFI	ERENC	ČES	92
APPI	ENDIX	Α	94
APPI	ENDIX	APPENDIX B	

LIST OF TABLES

Table 3.1	Beam models configurations	19
Table 3.2	Element types for each parts in ABAQUS	19
Table 3.3	Material properties for concrete (Elastic)	31
Table 3.4	Concrete Damaged Plasticity Properties Part 1	31
Table 3.5	Concrete Damaged Plasticity Properties Part 2	32
Table 3.6	Material Properties for steel.	32
Table 3.7	Material properties for fibers and resins	33
Table 3.8	Lamina properties to model BFRCP	33
Table 4.1	Comparison of ultimate load capacity for all the beam models	88

LIST OF FIGURES

Figure 2.1	Beam with openings as reference beams.	6
Figure 2.2	Beam with circular openings.	
Figure 2.3	Beam's reinforcement details and its cross section.	
Figure 2.4	Configuration of CFRP sheets.	8
Figure 2.5	Bonding of jute fibre textile.	10
Figure 2.6	Bonding of jute fibre textile in strips.	10
Figure 2.7	Mode of failure in unstrengthened cylinder (left), KFRP strengthened cylinder (middle) and GFRP strengthened cylinder (right).	11
Figure 2.8	Finite element discretisation of various parts of the specimen.	13
Figure 2.9	Mesh configuration.	14
Figure 2.10	Finite element model.	15
Figure 2.11	Finite element model of reinforcements.	16
Figure 2.12	Meshed finite element model warped with bamboo fiber.	16
Figure 3.1	Flowchart of Research	18
Figure 3.2	Schematic diagram of control beam (CB).	20
Figure 3.3	Schematic diagram of unstrengthened beam in flexural (UBF).	20
Figure 3.4	Schematic diagram of strengthened beam in flexural (SBF).	20
Figure 3.5	Schematic diagram of unstrengthened beam with openings (UBO).	21
Figure 3.6	Schematic diagram of strengthened beam with openings (SBO).	21
Figure 3.7	Creating part for concrete.	22
Figure 3.8	Defining shape and dimensions for concrete.	22
Figure 3.9	Control beam.	23
Figure 3.10	Creating part for rebar reinforcement.	23
Figure 3.11	Defining shape and dimension for reinforcement.	24
Figure 3.12	10 mm reinforcement.	24
Figure 3.13	Creating part for stirrups reinforcement.	24
Figure 3.14	Defining shape and dimensions for stirrups.	25
Figure 3.15	6 mm diameter stirrups.	25
Figure 3.16	Create Cut: Extrude selection.	26
Figure 3.17	Create circular opening part 1.	26
Figure 3.18	Create circular opening part 2.	27
Figure 3.19	Create circular opening part 3.	27
Figure 3.20	Creating circular openings part 4.	27

Figure 3.21	Beams with openings.	28
Figure 3.22	Creating part for BFRCP.	28
Figure 3.23	Defining shape and dimension for BFRCP.	29
Figure 3.24	BFRCP model.	29
Figure 3.25	Creating part for pin.	30
Figure 3.26	Defining shape and dimension for pin.	30
Figure 3.27	Pin model.	30
Figure 3.28	Concrete's material properties.	34
Figure 3.29	Steel's material properties.	35
Figure 3.30	BFRCP's material properties.	35
Figure 3.31	Pin's material properties.	36
Figure 3.32	Creating section for concrete.	36
Figure 3.33	Assigning concrete material properties to concrete section.	37
Figure 3.34	Creating section for reinforcements.	37
Figure 3.35	Assigning steel material properties to steel section.	37
Figure 3.36	Creating section for BFRCP.	38
Figure 3.37	Assigning BFRCP material properties to BFRCP section.	38
Figure 3.38	Creating section for pin.	38
Figure 3.39	Assigning pin material properties to pin section.	39
Figure 3.40	Steps in assigning section.	39
Figure 3.41	Creating instances for reinforcement and stirrup.	40
Figure 3.42	View Manipulation and Views toolbars.	40
Figure 3.43	Translate instances to axis as reference point.	41
Figure 3.44	Rotate reinforcement to correct position.	41
Figure 3.45	Create the rest of reinforcements.	42
Figure 3.46	Creating stirrups.	42
Figure 3.47	Resulted reinforcements arrangement.	43
Figure 3.48	Concrete is created and translated to reference point.	43
Figure 3.49	Remove concrete from display.	44
Figure 3.50	Tranlating reinforcements from reference point.	45
Figure 3.51	Checking the beam's model.	45
Figure 3.52	Reinforcement's arrangements for RC beams with openings.	46
Figure 3.53	Checking the beam's model.	46
Figure 3.54	Creating partiton for BFRCP.	47
Figure 3.55	Choosing the side for partition.	47

Figure 3.56	Defining the location for BFRCP.	47
Figure 3.57	Created partition for placement of BFRCP.	48
Figure 3.58	Creating partition for application of BFRCP on beam with openings	.48
Figure 3.59	Finished assembly of a control beam.	48
Figure 3.60	Finished assembly of a strengthened beam with openings (SBO).	49
Figure 3.61	Concrete to steel interaction.	49
Figure 3.62	Picking embedded region and host region.	50
Figure 3.63	Creating contact property.	50
Figure 3.64	Defining the interactions for a strengthend beam in flexural (SBF).	51
Figure 3.65	Creating crack.	52
Figure 3.66	XFEM crack growth interaction.	52
Figure 3.67	Creating boundary conditions for support.	53
Figure 3.68	Choosing "pinned" boundary condition for support.	53
Figure 3.69	Creating boundary condition for loading.	54
Figure 3.70	Input displacement for analysis.	54
Figure 3.71	Creating amplitude.	55
Figure 3.72	Finalised boundary conditions.	55
Figure 3.73	Seeding parts.	56
Figure 3.74	A meshed concrete part.	56
Figure 3.75	Defining the element type of concrete part.	57
Figure 3.76	Creating analysis step.	58
Figure 3.77	Step configuration part 1.	58
Figure 3.78	Step configuration part 2.	58
Figure 3.79	Field output request for crack part 1.	59
Figure 3.80	Field output request for crack part 2.	59
Figure 3.81	Job manager.	60
Figure 3.82	Determining contours lines.	61
Figure 3.83	Plotting load and displacement graph part 1.	61
Figure 3.84	Plotting load and displacement graph part 2.	62
Figure 3.85	Plotting load and displacement graph part 3.	62
Figure 4.1	Load-deflection curve for control beam (CB).	64
Figure 4.2	Load-deflection curve for unstrengthened beam in flexural (UBF).	65
Figure 4.3	Load-deflection curve for strengthened beam in flexural (SBF).	66
Figure 4.4	Load-deflection curve for SBF using longer plate length.	67
Figure 4.5	Crack pattern for control beam (CB).	68

Figure 4.6	Crack pattern for beam in flexural (UBF).	68
Figure 4.7	Crack pattern for polyester strengthened beam in flexural (PSBF).	69
Figure 4.8	Crack pattern for vinyl ester strengthened beam in flexural (VSBF).	69
Figure 4.9	Crack pattern for PSBF using longer plate length.	70
Figure 4.10	Crack pattern for VSBF using longer plate length.	70
Figure 4.11	Strain contour for control beam (CB).	71
Figure 4.12	Strain contour for unstrengthened beam in flexural (UBF).	72
Figure 4.13	Strain contour for polyester strengthened beam in flexural (PSBF).	72
Figure 4.14	Strain contour for vinyl ester strengthened beam in flexural (VSBF)	.73
Figure 4.15	Strain contour for PSBF using longer plate length.	73
Figure 4.16	Strain contour for VSBF using longer plate length.	74
Figure 4.17	Load-deflection curve for unstrengthened beam with openings (UBO).	75
Figure 4.18	Load-deflection curve for strengthened beams with openings (SBO)	.76
Figure 4.19	Crack pattern for unstrengthened beam with openings (UBO).	77
Figure 4.20	Crack pattern for strengthened beam with openings (SBO).	77
Figure 4.21	Strain contour for unstrengthened beam with openings (UBO).	78
Figure 4.22	Strain contour for polyester strengthened beam with openings (PSBO).	79
Figure 4.23	Strain contour for vinyl ester strengthened beam with openings (VSBO).	79
Figure 4.24	Load-deflection curve for FEA versus experimental of CB	80
Figure 4.25	Load-deflection curve for FEA versus experimental of UBF	81
Figure 4.26	Load-deflection curve for FEA versus experimental of PSBF	81
Figure 4.27	Load-deflection curve for FEA versus experimental of VSBF	82
Figure 4.28	Crack pattern for FEA versus experimental of CB	82
Figure 4.29	Crack pattern for FEA versus experimental of UBF	83
Figure 4.30	Crack pattern for FEA versus experimental of PSBF	84
Figure 4.31	Crack pattern for FEA versus experimental of VSBF	84
Figure 4.32	Load-deflection curve for FEA versus experimental of UBO	85
Figure 4.33	Load-deflection curve for FEA versus experimental of PSBO	86
Figure 4.34	Load-deflection curve for FEA versus experimental of VSBO	86
Figure 4.35	Crack pattern for FEA versus experimental for UBO	87
Figure 4.36	Crack pattern for FEA versus experimental for SBO	88

LIST OF SYMBOLS

E	Modulus of Elasticity
v	Poisson's ratio
kN	Kilo Newton
m	Meter
mm	Millimetre
MPa	Mega Pascal
GPa	Giga Pascal
tonne/mm ³	Tonne per cubic millimetre

LIST OF ABBREVIATIONS

3D	3 Dimensional
RC	Reinforced Concrete
CB	Control Beam
BFRCP	Bamboo Fiber Reinforced Composite Plate
UBF	Unstrengthened Beam in Flexural
SBF	Strengthened Beam in Flexural
PSBF	Polyester-Strengthened Beam in Flexural
VSBF	Vinyl ester-Strengthened Beam in Flexural
UBO	Unstrengthened Beam with Openings
SBO	Strengthened Beam with Openings
PSBO	Polyester-Strengthened Beam with Openings
VSBO	Vinyl ester-Strengthened Beam with Openings
FE	Finite Element
FEA	Finite Element Analysis
FRP	Fiber Reinforced Polymer