Assessing Storage of Stability and Mercury Reduction of Freeze-Dried *Pseudomonas putida* within Different Types of Lyoprotectant

Abdul Aziz Mohd Azoddeina), Yana Nuratrib), Faten Ahada Mohd Azlic) and Ahmad Bazli Bustaryd)

Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Malaysia

a) Corresponding author: aaziz@ump.edu.my, azizgelok@hotmail.com,

b) yna_nuratri@yahoo.com
c) ahada_azli@yahoo.com
d) ahmadbazli23@gmail.com

Abstract. *Pseudomonas putida* is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried *P. putida* allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry *P. putida* cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried *P. putida* obtained was then mixed with synthetic mercury. Viability of recovery *P. putida* after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09 CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried *P. putida* cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth *P. putida* but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried *P. putida* cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91%. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried *P. putida* was found to have lower mercury reduction compare to the fresh *P. putida* that has been grown in agar. Result from this study may be beneficial and useful as initial reference before commercialized freeze-dried *P. putida*.

INTRODUCTION

Freeze drying of bacteria has been widely used in pharmaceutical, food industry and other application that related to bio-preservation process. Attention has been given to the method of freeze-drying of certain bacteria due to the beneficial effect on the stability after long storage period, appreciable number of rehydrate cells and the transportable product [1]. Lyoprotectant is often added into the solution prior freeze drying process to protect the cells from freezing and drying [2]. The viability of the cells is improved by addition of protective medium as matrix in the solution [3].

Lyoprotectant also provide significant contribution on stability of bacteria by providing protection towards freezing and drying. Freeze drying without protectant cause detrimental effect on the cell. Freeze drying of *Lactobacillus salivarius* without lyoprotectant and only used distilled water as solvent cause 99% of the bacteria to loss viability [4]. However, it is not all of the lyoprotectant to be successfully provide good stability of the freeze