THE PROBABILITY DISTRIBUTION OF HOURLY RAINFALL FOR KELANTAN RIVER BASIN

NUR NADIA FAZIERA BINTI ABDUL GHANI

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree in Civil Engineering.

(Supervisor's Signature) Full Name : SHAIRUL ROHAZIAWATI BINTI SAMAT Position : LECTURER Date : 15TH JUNE 2017

(Co-supervisor's Signature)Full Name: NORASMAN BIN OTHMANPosition: LECTURERDate: 15th JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NUR NADIA FAZIERA BINTI ABDUL GHANI ID Number : AA13236 Date : 15th JUNE 2017

THE PROBABILITY DISTRIBUTION OF HOURLY RAINFALL FOR KELANTAN RIVER BASIN

NUR NADIA FAZIERA BINTI ABDUL GHANI

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

Alhamdulillah, Thank you to Allah SWT for blessing, the lessons, the tears and the joy. Firstly, I would like to express my deep and sincere gratitude to my beloved supervisor, Pn. Shairul Rohaziawati Binti Samat. Her wide knowledge and her logical way of thinking have been of great value for me. Without her help and kindness, it is impossible to complete this thesis on time. Thank you again.

I am grateful to all my family members, especially my mother Norhashimah Binti Said and also my father Abdul Ghani Bin Said who played the major role in giving me an endless guidance and support throughout my study in UMP. Without their encouragement and understanding, it would have been impossible for me to finish this thesis.

Last but not least, I would like to acknowledge my beloved friends and every person who has contributed directly or indirectly to the success of this thesis. Thank you from the bottom of my heart and May Allah bless you all.

TABLE OF CONTENT

DEC	CLARATION	
TITI	LE PAGE	
ACK	KNOWLEDGEMENTS	iii
ABS	TRACT	iiiii
ABS	TRAK	iv
TAB	BLE OF CONTENT	v
LIST	Γ OF TABLES	x
LIST	Γ OF FIGURES	xi
LIST	Γ OF SYMBOLS	xiv
LIST	Γ OF ABBREVIATIONS	XV
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	5
1.3	Objectives	7
1.4	Scope of study	7
1.5	Significance of study	7
СНА	APTER 2 LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Flood	9
	2.2.1 Sources of flooding	11
	2.2.2 Type of flood	12

		2.2.2.1 Flash flood	12	
		2.2.2.3 Monsoon flood	12	
	2.2.3	Effect of flood	13	
2.3	Rainfa	all Characteristic		13
	2.3.1	Intensity of the rainfall	14	
	2.3.2	The frequency of the rainfall	15	
	2.3.3	Rainfall data	15	
	2.3.4	Relationship Rainfall-Runoff	15	
		2.3.4.1 Climatic Factors	16	
		2.3.4.2 Physiographic Factors	17	
2.4	Probal	bility distribution		17
	2.4.1	Probability distribution of hourly rainfall	19	
		2.4.1.1 Lognormal distribution	19	
		2.4.1.2 Gumbel distribution	20	
		2.4.1.3 Gamma distribution	21	
		2.4.1.4 Exponential distribution	22	
		2.4.1.5 Weibul distribution	22	
		2.4.1.6 Mixed Exponential distribution	23	
2.5	Metho	od of parameter estimation		23
	2.5.1	Method of Moment	23	
	2.5.2	Maximum Likelihood	24	
	2.5.3	Least Square	25	
2.6	Goodr	ness of fit Test		25
	2.6.1	Kolmogorov-Smirnov Test	25	
	2.6.2	Anderson-Darling Test	26	
	2.6.3	Chi-square Test	26	

2.7	Outlier		26	
2.8	Average Recurrence Interval (ARI)		27	
	2.8.1	Formula	27	
	2.8.2	Application	27	
2.9	Softw	are used to estimate probability distribution		28
	2.9.1	EasyFit	28	
	2.9.2	Matlab	28	
	2.9.3	SPSS	28	
CHA	PTER 3	3 METHODOLOGY		29
3.1	Introd	uction		29
3.2	Flow chart		30	
3.3	Study area		31	
3.4	Data collection		33	
3.5	Metho	od of analysis		35
	3.5.1	Outlier	35	
	3.5.2	Probability distribution	36	
		3.5.2.1 Lognormal distribution	36	
		3.5.2.2 Gumbel distribution	36	
	3.5.3	Method of Estimation	36	
		3.5.3.1 Method of Moment	36	
	3.5.4	Goodness of fit	37	
		3.5.4.1 Chi-square Test	37	
		3.5.4.2 Anderson-Darling Test	38	
	3.5.5	Maximum hourly rainfall intensity for ARI	38	
		3.5.5.1 Lognormal distribution	38	

		3.5.5.2 Gumbel distribution	39	
	3.5.6	EasyFit	40	
СНА	PTER 4	RESULTS AND DISCUSSION		41
4.1	Introd	uction		41
4.2	Data u	used in this study		42
	4.2.1	Station 4717001 Blau	43	
	4.2.2	Station 4614001 Brook	45	
	4.2.3	Station 4721001 Upper Chiku	46	
	4.2.4	Station 4726001 Gunung Gagau	47	
	4.2.5	Station 4819027 Gua Musang	47	
	4.2.6	Station 4923001 Kg. Aring	48	
	4.2.7	Station 5120025 Balai Polis Bertam	49	
	4.2.8	Station 5216001 Gob	49	
	4.2.9	Station 5320038 Dabong	50	
	4.2.10	Station 5322044 Kg. Lalok	51	
	4.2.11	Station 5520001 Ulu Sekor	51	
	4.2.12	Station 5719001 JPS. Kuala Krai	52	
	4.2.13	Station 55229001 Kg. Duarian Daun	53	
	4.2.14	Station 5820006 Bendang Nyior	53	
	4.2.15	Station Stor JPS. Kota Bharu	54	
4.3	Outlie	r		55
4.4	Fitting	g of distribution		56
	4.4.1	Station 4717001 Blau	57	
	4.4.2	Station 4614001 Brook	58	
	4.4.3	Station 4721001 Upper Chiku	59	

	4.4.4	Station 4726001 Gunung Gagau	60	
	4.4.5	Station 4819027 Gua Musang	61	
	4.4.6	Station 4923001 Kg. Aring	62	
	4.4.7	Station 5120025 Balai Polis Bertam	63	
	4.4.8	Station 5216001 Gob	64	
	4.4.9	Station 5320038 Dabong	65	
	4.4.10	Station 5322044 Kg. Lalok	66	
	4.4.11	Station 5520001 Ulu Sekor	67	
	4.4.12	Station 5522047 JPS. Kuala Krai	68	
	4.4.13	Station 55229001 Kg. Duarian Daun	69	
	4.4.14	Station 5820006 Bendang Nyior	70	
	4.4.15	Station Stor JPS. Kota Bharu	71	
4.5	Param	eter Estimation		72
4.6	Goodr	ness of Fit		73
4.7	Avera	ge Recurrence Interval of hourly rainfall intensity		74
		CONCLUSION		
CHAI	PIER 5	CUNCLUSION		11
5.1	Introd	uction		77
5.2	Conclu	usion		77
5.3	Recon	nmendation		78
REFERENCES 79			79	
APPE	APPENDIX A 81			81

LIST OF TABLES

Table 3.1	The list of stations under study in KRB	34
Table 4.1	Statistical characteristic of the AMS hourly rainfall	43
Table 4.2	The annual maximum series of hourly rainfall data for Station 4717001 Blau.	44
Table 4.3	Limit of outlier for each station	55
Table 4.4	Estimated parameters for distributions under study	72
Table 4.5	Chi-square test for all data series.	73
Table 4.6	Anderson-Darling test for all data series.	74
Table 4.7	Estimated annual maximum hourly rainfall (mm) obtained by Lognormal distribution for return period of 2, 10, 25, 50 and 100 years.	76
Table 4.8	Estimated annual maximum hourly rainfall (mm) obtained by Gumbel distribution for return period of 2, 10, 25, 50 and 100 years.	76

LIST OF FIGURES

Figure 1.1	Sultan Muhammad IV's stadium, Kota Bharu	2
Figure 1.2	Flood in Kampung Tiong, Gua Musang	3
Figure 1.3	Flood in Kuala Krai	3
Figure 1.4	Flood prone area in Peninsular Malaysia	4
Figure 1.5	Flood prone area in Sabah and Sarawak	4
Figure 1.6	Inadequate urban drainage practices	6
Figure 2.1	Flood in Kuala Krai, Kelantan	10
Figure 2.2	Flood in Gua Musang, Kelantan	10
Figure 2.3	Flood in Kota Bharu, Kelantan	11
Figure 2.4	Southwest and Northeast monsoon	13
Figure 2.5	The hydrologic cycle	14
Figure 2.6	The graph of Lognormal Distribution	19
Figure 2.7	The graph of Gumbel Distribution	20
Figure 2.8	The graph of Gamma Distribution	21
Figure 2.9	The graph of Exponential Distribution	22
Figure 2.10	The graph of Weibul Distribution	23
Figure 2.11	The box and whisker plot define outlier	27
Figure 3.1	Flow chart of methodology	30
Figure 3.2	The location of catchment for Kelantan River Basin in Peninsu	lar 32
Figure 3.3	The location of sub-basin in Kelantan River Basin	33
Figure 3.4	The location of station in KRB	34
Figure 3.5	The referred table for Lognormal distribution, Cs=0	38
Figure 4.1	Annual Maximum Series (AMS) hourly rainfall for station 471 Blau	7001 44
Figure 4.2	AMS hourly rainfall for Station 4614001 Brook	44
Figure 4.3	AMS hourly rainfall for Station 4721001 Upper Chiku	45
Figure 4.4	AMS hourly rainfall for Station 472600 Gunung Gagau	46
Figure 4.5	AMS hourly rainfall for Station 4819027 Gua Musang	46
Figure 4.6	AMS hourly rainfall for Station 4923001 Kg. Aring	47
Figure 4.7	AMS hourly rainfall for Station 5120025 Balai Polis Bertam	48
Figure 4.8	AMS hourly rainfall for Station 5216001 Gob	48
Figure 4.9	AMS hourly rainfall for Station 5320038 Dabong	49
Figure 4.10	AMS hourly rainfall for Station 5322044 Kg. Lalok	50

Figure 4.11	AMS hourly rainfall for Station 5520001 Ulu Sekor	50
Figure 4.12	AMS hourly rainfall for Station 5522047 JPS. Kuala Krai	51
Figure 4.13	AMS hourly rainfall for Station 5719001 Kg. Durian Daun	52
Figure 4.14	AMS hourly rainfall for Station 5820006 Bendang Nyior	52
Figure 4.15	AMS hourly rainfall for Station 6122064 Stor JPS. Kota Bharu	53
Figure 4.16	Outlier of AMS hourly rainfall for Station 4717001 Blau	55
Figure 4.17	Plotted graph of probability density function of Lognormal Distribution Station 4717001 Blau	57
Figure 4.18	Plotted graph of probability density function of Gumbel Distribu Station 4717001 Blau	ution 57
Figure 4.19	Plotted graph of probability density function of Lognormal Distribution for Station 4614001 Brook	58
Figure 4.20	Plotted graph of probability density function of Gumbel Distribution for Station 4614001 Brook	ition 58
Figure 4.21	Plotted graph of probability density function of Lognormal Distribution for Station 4721001 Upper Chiku.	59
Figure 4.22	Plotted graph of probability density function of Gumbel Distribution for Station 4721001 Upper Chiku.	ition 59
Figure 4.23	Plotted graph of probability density function of Lognormal Distribution for Station 4726001 Gunung Gagau	60
Figure 4.24	Plotted graph of probability density function of Gumbel Distribution for Station 4726001 Gunung Gagau	ition 60
Figure 4.25	Plotted graph of probability density function of Lognormal Distribution for Station 4819027 Gua Musang.	61
Figure 4.26	Plotted graph of probability density function of Gumbel Distribution for Station 4819027 Gua Musang.	tion 61
Figure 4.27	Plotted graph of probability density function of Lognormal Distribution for Station 4923001 Kg. Aring.	62
Figure 4.28	Plotted graph of probability density function of Gumbel Distribution for Station 4923001 Kg. Aring.	ution 62
Figure 4.29	Plotted graph of probability density function of Lognormal Distribution for Station 5120025 Balai Polis Bertam	63
Figure 4.30	Plotted graph of probability density function of Gumbel Distribution for Station 5210025 Balai Polis Bertam	ution 63
Figure 4.31	Plotted graph of probability density function of Lognormal Distribution for Station 5216001 Gob	64
Figure 4.32	Plotted graph of probability density function of Gumbel Distribution for Station 5216001 Gob	ution 64
Figure 4.33	Plotted graph of probability density function of Lognormal Distribution for Station 5320038 Dabong	65

Figure 4.34	Plotted graph of probability density function of Gumbel Distrib for Station 5320038 Dabong	oution 65
Figure 4.35	Plotted graph of probability density function of Lognormal Distribution for Station 5322044 Kg, Lalok	66
Figure 4.36	Plotted graph of probability density function of Gumbel Distrib for Station 5322044 Kg, Lalok	oution 66
Figure 4.37	Plotted graph of probability density function of Lognormal Distribution for Station 5520001 Ulu Sekor	67
Figure 4.38	Plotted graph of probability density function of Gumbel Distrib for Station 5520001 Ulu Sekor	oution 67
Figure 4.39	Plotted graph of probability density function of Lognormal Distribution for Station 5522047 JPS Kuala Krai	68
Figure 4.40	Plotted graph of probability density function of Gumbel Distrib for Station 5522047 JPS Kuala Krai	oution 68
Figure 4.41	Plotted graph of probability density function of Lognormal Distribution for Station 5719001 Kg. Durian Daun	69
Figure 4.42	Plotted graph of probability density function of Gumbel Distrib for Station 5719001 Kg. Durian Daun	oution 69
Figure 4.43	Plotted graph of probability density function of Lognormal Distribution for Station 5820006 Bendang Nyior	70
Figure 4.44	Plotted graph of probability density function of Gumbel Distrib for Station 5820006 Bendang Nyior	oution 70
Figure 4.45	Plotted graph of probability density function of Lognormal Distribution for Station 6122064 Stor JPS. Kota Bharu	71
Figure 4.46	Plotted graph of probability density function of Gumbel Distrib for Station 6122064 Stor JPS. Kota Bharu	oution 71

LIST OF SYMBOLS

Cs	Sknewness Coefficient
σ	Standard deviation, Scale parameter
μ	Mean, Location parameter
K _T	Frequency Factor
\mathbf{Q}_1	First Quartile
Q ₃	Third Quartile
Г	Gamma Function

LIST OF ABBREVIATIONS

KRB	Kelantan River Basin
DID	Department of Irrigation and Drainage
ARI	Annual Recurrence Interval
AMS	Annual Maximum Series
IQR	Interquartile Range