STRENGTHENING OF RC BEAMS WITH BAMBOO FIBER REINFORCED COMPOSITE-POLYESTER PLATE

LEE SIN GIE

B. ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

STRENGHTENING OF RC BEAMS WITH BAMBOO FIBER REINFORCED COMPOSITE- POLYESTER PLATE

LEE SIN GIE

Thesis submitted in fulfilment of the requirements for the award of the degree of B. Eng. (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources Universiti Malaysia Pahang

JUNE 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of B. Eng. (Hons.) Civil Engineering.

(Supervisor's Signature) Full Name : DR. CHIN SIEW CHOO Position : SUPERVISOR Date : 15 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : LEE SIN GIE ID Number : AA13220 Date : 15 JUNE 2017

DEDICATION

To my beloved parents, Lee Chon Meng and Tan Kim Hong for their endless love and support, and not to forget my beloved siblings, Lee Sin Wei, Lee Sin Tien and Lee Khoo Sam.

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the parties who helped me in completing this research. First and foremost, I would like to acknowledge the Universiti Malaysia Pahang (UMP) for giving me this opportunity to conduct this research and providing well equipped facilities to complete the research in the given time.

Besides that, I would like to express my sincere gratitude to my research supervisor, Dr. Chin Siew Choo for her guidance and support during the planning and development of this research work. Her willingness to give her time so generously has been very much appreciated. Next, I would like to express my very great appreciation to all my friends and teammates especially Tong Foo Sheng and Lim Su Pueh who willing to assist and support me in conducting the laboratory tests throughout the research. This research would not have been possible without their helps.

Moreover, I would to thank Pamix Sdn. Bhd. for their sponsorship in concrete and Franky Construction Sdn. Bhd. for their helping in preparing formworks and reinforcement bars for this research. I would also like to extend my thanks to the technicians of the concrete laboratory for their help in offering me the resources in running the program. They always give me advices and guidance whenever I need helps such as the purchase of equipment and laboratory testing procedures.

Most importantly, none of this would have been possible without the love and patience of my family. I would like to express my heartfelt gratitude to my family who always stand by there and support me throughout the research.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	XV
LIST OFABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Study	3
1.5	Research Significance	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introdu	ction	2	5
2.2	Natural	Fiber	2	5
	2.2.1	Kenaf Fiber	(5
	2.2.2	Jute Fiber	-	7
	2.2.3	Bamboo Fiber	8	3

2.3	RC Be	am with (Openings	9
	2.3.1	Classifi	cation of Openings	9
		2.3.3.1	Shape	9
		2.3.3.2	Size	9
		2.3.3.3	Location	10
2.4	Fiber F	Reinforce	d Polymer	11
	2.4.1	Introduc	ction	11
	2.4.2	Categor	ies of FRP	12
		2.4.2.1	Synthetic Fiber	12
		2.4.2.2	Natural Fiber	13
	2.4.3	Types o	f Resin	15
		2.4.3.1	Introduction	15
		2.4.3.2	Thermoplastic	16
		2.4.3.3	Thermoset	16
2.5	Strengt	thening ir	RC Beam using Fiber Reinforced Polymer	17
	2.5.1	Internal	Strengthening	17
	2.5.2	Externa	l Strengthening	18
		2.5.2.1	Introduction	18
		2.5.2.2	Beam without Opening	19
		2.5.2.3	Beam with Openings	22
2.6	Summa	ary		25

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Overview of Chapter		
3.2	Prepar	ation of Specimens	28
	3.2.1	Formwork	28
	3.2.2	Reinforcement	28
	3.2.3	Concrete	31
	3.2.4	Mould of Opening	32

3.3	Casting and Curing 33		
3.4	Prepar	ration of BFRC-Polyester Plate	34
	3.4.1	Bamboo Fiber	34
	3.4.2	Polyester	34
	3.4.3	Testing of BFRC-Polyester Plate	35
	3.4.4	Procedure of Making BFRC-Polyester Plate	37
3.5	BFRC	-Polyester Strengthening System	38
	3.5.1	Sikadur®-330 Epoxy Laminating Resin	38
	3.5.2	Strengthening Configuration	39
	3.5.3	BFRC-Polyester Plate Strengthening Procedure	40
3.6	Labora	atory Testing	42
	3.6.1	Slump Test	42
	3.6.2	Compressive Strength Test	43
	3.6.3	Four-Point Loading Test	43
CHADTED A	DESI	IL TS AND DISCUSSION	

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introd	Introduction 4	
4.2	Fresh	and Hardened Properties of Concrete	45
	4.2.1	Slump Test	45
	4.2.2	Compressive Strength Test	46
4.3	Behav	iour of Bamboo Fiber Reinforced Composite-Polyester	48
	Plate		
	4.3.1	Physical Test – Fourier Transform Infrared Spectroscopy	
		(FTIR)	48
	4.3.2	Thermal Test – Thermogravimetric Analysis (TGA)	49
	4.3.3	Mechanical Test	51
		4.3.3.1 Tensile Test	51
		4.3.3.2 Flexural Test	53
4.4	Streng	thening Behaviour of RC Beam in Flexure	55
	4.4.1	Load-Deflection Curve	55
	4.4.2	Crack Pattern and Failure Mode	57

4.5	Strengthening Behaviour of RC Beam in Shear	59
	4.5.1 Load Deflection Curve	59
	4.5.2 Crack Pattern and Failure Mode	61
CHAPTER 5	CONCLUSIONS AND RECOMMENDATIONS	
5.1	Introduction	65
5.2	Conclusions	65
5.3	Recommendations	
REFERENCES	5	67
		70
APPENDICES		70
А	Concrete Mix Design Computation and Summary from Pamix Sdn. Bhd	70
В	Photos of Concrete Cubes After Compressive Strength Test	71
С	Photos of BFRC-Polyester Plate After Mechanical Testing	73
D	Distributions of the Characteristic Wavelengths Selected by SPA for Hemicellulose, Cellulose and Lignin	74
Е	Raw Data of Strengthened Beam in Flexure	75

xi

LIST OF TABLES

Table No.	Title	Pages
2.1	The comparison between natural fiber and synthetic fiber in	6
	term of technical and environmental aspect	
2.2	Mechanical properties of natural fibers	15
3,1	Mechanical and physical properties of Sikadur®-30	39
4.1	Result of compressive strength test at day 3, 14 and 28,	47
	respectively	
4.2	Frequencies and assignments of FTIR absorption bands	48
4.3	Summary of TGA results	50
4.4	Average tensile strength obtained	52
4.5	Average flexure strength obtained	53
4.6	Beams test result in flexural strengthening	56
4.7	Beams test result in shear strengthening	60

LIST OF FIGURES

Figure No.	Title		
2.1	Crack Pattern of beam specimens of different size of	10	
	rectangular opening		
2.2	Forming of hinge in RC beam with opening	10	
2.3	Failure Pattern	13	
2.4	Cracking patterns of tested beams	17	
2.5	Shear strengthening by FRP wrapping	19	
2.6	Longitudinal and cross section of strengthened beam	20	
2.7	Different configurations of CFRP strip	21	
2.8	Failure patterns of strengthened beams	22	
2.9	Schematic of test specimen	24	
2.10	Cracking pattern of test specimens	24	
3.1	Flow Chart of Research Methodology	27	
3.2	Spray equipment was used to clean the inner surface of	28	
	formwork from dust		
3.3	Scheme of reinforcement bars in control beam	29	
3.4	Scheme of reinforcement bars of RC beam without circular	30	
	opening		
3.5	Scheme of reinforcement bars of RC beam with circular	30	
	openings		
3.6	Cross section of steel reinforcements	30	
3.7	Real image of steel reinforcement rebar	31	
3.8	Concrete cover with size of 25 mm was prepared	31	
3.9	Polystyrene in cylinder shape	32	
3.10	Polystyrene in cylinder shape were pasted onto the formwork	32	
3.11	Concrete casting	33	
3.12	Beams were covered to avoid direct exposed from sunlight	33	
3.13	Bamboo fibers washed with warm water	34	
3.14	The amount of polyester and MEKP was prepared before the	35	
	mixing start		

3.15	Electromechanical Universal Test Machine	36
3.16	Test setup for tensile test	36
3.17	Test setup for flexural test	36
3.18	Procedure of fabrication of BFRC-polyester plate	38
3.19	Strengthening configuration of RC beam without opening	40
3.20	Strengthening configuration of RC beam with openings	40
3.21	BFRC-polyester plate strengthening procedure	40
3.22	Slump test result	43
3.23	Set up of Magnus Frame	44
3.24	Scheme of four-point loading test of beam without opening	44
3.25	Scheme of four-point loading test of beam with openings	44
4.1	Slump Test	46
4.2	Compressive strength vs sample age of concrete	47
4.3	FTIR results	49
4.4	TGA results	51
4.5	Stress-strain curve of tensile test	52
4.6	Failure of tensile test specimen	53
4.7	Stress-strain curve of flexural test	54
4.8	Failure of flexural test specimen	54
4.9	Comparison of load-deflection curve of RC beams in flexural	56
	strengthening	
4.10	Crack pattern of CB1	57
4.11	Crack pattern of UBF	58
4.12	Crack pattern of PSBF	58
4.13	Comparison of load-deflection curve of RC beams in shear	60
	strengthening	
4.14	Crack Pattern of CB2	61
4.15	Crack Pattern of UBO	62
4.16	Crushing of concrete found in UBO	62
4.17	Crack Pattern of PSBO	63
4.18	Yielding of steel reinforcements and crushing of concrete	63
4.19	Peeling failure observed in PSBO	64
4.20	Peeling of BFRC-polyester plate	64

LIST OF SYMBOLS

m	Metre
mm	Millimetre
mm^2	Square millimetre
cm ⁻¹	Per Centimetre
%	Percent
kg	Kilogram
kN	Kilo newton
Mg	Megagram
MJ	Megajoule
MPa	Megapascal
GPa	Gegapascal
wt. %	Percentage by weight
vol. %	Percentage by volume
h	Height
g/cm ³	Gram per cubic centimetre
N/mm ²	Newton per square millimetre
° C	Degree Celcius
rpm	Revolutions per minute

LIST OF ABBREVIATIONS

RC	Reinforced Concrete
FRP	Fiber Polymer
BFRC	Bamboo Fiber Reinforced Concrete
CFRP	Carbon Fiber Reinforced Polymer
ASTM	American Society for Testing and Materials
FTIR	Fourier Transform Infrared Spectroscopy
TGA	Thermogravimetric Analysis
BS	British Standard
BS EN	British Standard Norme Européenne
CB	Control Beam
UBF	Un-strengthened Beam in Flexure
PSBF	Polyester Strengthened Beam in Flexure
UBO	Un-strengthened Openings Beam
PSBO	Polyester Strengthened Openings Beam