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Abstract. Chicken egg is a source of food of high demand by humans. Human operators 

cannot work perfectly and continuously when conducting egg grading. Instead of an egg 

grading system using weight measure, an automatic system for egg grading using computer 

vision (using egg shape parameter) can be used to improve the productivity of egg grading. 

However, early hypothesis has indicated that more number of egg classes will change when 

using egg shape parameter compared with using weight measure. This paper presents the 

comparison of egg classification by the two above-mentioned methods. Firstly, 120 images of 

chicken eggs of various grades (A–D) produced in Malaysia are captured. Then, the egg 

images are processed using image pre-processing techniques, such as image cropping, 

smoothing and segmentation. Thereafter, eight egg shape features, including area, major axis 

length, minor axis length, volume, diameter and perimeter, are extracted. Lastly, feature 

selection (information gain ratio) and feature extraction (principal component analysis) are 

performed using k-nearest neighbour classifier in the classification process. Two methods, 

namely, supervised learning (using weight measure as graded by egg supplier) and 

unsupervised learning (using egg shape parameters as graded by ourselves), are conducted to 

execute the experiment. Clustering results reveal many changes in egg classes after performing 

shape-based grading. On average, the best recognition results using shape-based grading label 

is 94.16% while using weight-based label is 44.17%. As conclusion, automated egg grading 

system using computer vision is better by implementing shape-based features since it uses 

image meanwhile the weight parameter is more suitable by using weight grading system.   

 

1.  Introduction 

The egg production industry has become a large industry owing to the demand and requirement by 

consumers, particularly in Malaysia. Egg is widely used worldwide and is healthy and safe for 

consumers. According to the report from the Ministry of Agriculture and Agra 2011 (Report 2011), 

the consumption of eggs per capita in Malaysia is 295 pieces per year [1]. The average production of 

eggs in the country is approximately 25 million per year [1]. The production rate increases to 37 

million during festival seasons, such as Hari Raya, Chinese New Year and school holidays [1]. The 

high demand of eggs by consumers comes with high expectation for eggs with good quality. Many 

production companies are competing to produce eggs with extra nutrients and good shapes. Chicken 

http://creativecommons.org/licenses/by/3.0
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eggs are rated and graded into AA, A, B, C, D, E and F on the basis of their weight. The grade 

classification based on weight is shown in Table 1 [1]. 

 

 

Table 1. Grade classification based on weight.  

Grade Weight (g) 

AA More than 70 

A 65–70 

B 60–65 

C 55–60 

D 50–55 

E 45–50 

F Below 40 

 

The incremental percentage of egg demand in Malaysia has required improvement in egg grading 

systems. Classifying eggs on the basis of their grade becomes easier than conventional method, fast 

and efficient by implementing an automated system. Egg grading cannot be perfectly and continuously 

conducted by human operators because of eye fatigue and increasing error as a result of over wearing. 

An automated system for egg grading can be a solution. 

Many methods using computer vision are introduced to accelerate the speed of egg grading 

systems. These methods can be categorised as grading using egg size or shape parameter. They differ 

from using egg weight in egg grading by egg suppliers. Researchers have continued performing egg 

grading using egg size parameter despite the said difference. As mentioned earlier, many countries, 

including Malaysia, use weight in egg grading. Therefore, the classification process based on weight 

measure versus shape parameter is conducted in detail in this study. 

2.  Related Works 

The literature on egg grading shows that computer vision systems are used for egg dirt inspection, egg 

blood spot detection and egg crack detection [2-8]; however, these topics are beyond the scope of the 

current study. Two case studies in [9] and [10] are considered. All algorithm and experimental setup 

details are illustrated in the next section. 

An egg grading system generally consists of two sections, namely, hardware and software designs. 

The hardware design includes the equipment and components needed to carry eggs and capture their 

images, such as a conveyor to carry the eggs, a camera to capture their images and a lamp for lighting 

in capturing the egg images. The software design involves the algorithms that process the egg images. 

The software design starts when the egg image is already captured by the camera. Then, the image will 

be sent into the pattern recognition system for processing, and the result will determine the egg grade. 

2.1.  Case Study 1 

In this study, a grade classification and dirt inspection system for eggs is developed using a 

combination of image processing techniques. A few tools are used for the hardware system. An 

illumination box is built to enable light adjustment and light noise removal. Two bulb lamps are 

attached on top of the box. The dimension of the box is 10 cm × 10 cm × 10 cm. A webcam camera is 

installed to capture egg images, and the lens camera is attached 200 mm from the egg. Figure 1 shows 

the overview of the image capturing system. 
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Figure 1. Overview of the system [9]. 

 

A database is developed to classify eggs. Pre-processing of images involves four steps: (i) 

converting colour images to greyscale; (ii) image thresholding processing (greyscale to binary); (iii) 

removing noises in binary images; and (iv) sharpening, smoothening and filling the region and hole of 

binary images. Two major features, area of white pixels and diameter of egg, are used in this system 

(Figure 2). A total of 60 eggs from 6 different grades (AA-E) are used in the experiment. The classifier 

for classification is not discussed in detail herein. The experimental results are illustrated in Figure 3. 

The system tests the cleanliness and dirtiness of eggs and executes classification and dirt inspection of 

eggs simultaneously. 

 

 

 
 

Figure 2. Egg diameter vs. pixel area [9]. Figure 3. Classification results [9]. 

2.2.  Case Study 2 

An algorithm for indirect measurement of egg weight is designed using machine vision system and 

image analysis. The hardware setup uses a digital camera VIDO AU CC540HDN, light source system 

and work surface. The steps of the proposed algorithm are shown in Figure 4.  

Seven features are used as geometric features of egg. Amongst them, four features, namely, 

Perimeter (P), Area (S), Major Axis Length (B) and Minor Axis Length (A), are calculated using the 

‘regionprops’ function in MATLAB. Other features are executed on the basis of the previous basic 

features, as illustrated in the next paragraphs. 

Egg volume ( C
V ) is calculated using the following equation: 

ABV
C 3

2
  (1) 
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Figure 4. Block diagram of the method [10]. 

 

Two coefficients of egg shape ( 1
K  and 2

K ) are calculated using the following equation: 

S

P
K

2

1
  and B

A
K 

2  
(2) 

In this study, coefficients (regression analysis) are used to measure the distance and difference of 

features. The results indicate that Perimeter, Major and Minor Axis Length and the two shape 

coefficients are significant features for indirect measurement of egg weight. Unfortunately, the 

features are not labelled on the basis of true weight classes. Classification, that is, assigning class 

labels, is essential to develop an effective automated egg grading system. After a feature extraction or 

selection procedure finds a proper representation, a classifier can be constructed from the labelled 

training data by using many possible approaches [11]. Then, this classifier is used to predict the class 

label of the test data. Classification is a type of supervised learning algorithm. 

Supervised learning is a process of assigning a function to some desired categories as determined 

from the supervised training data. Here, the training data consist of a set of training examples, in 

which each set consists of a pair composed of an input object and a desired output value. A supervised 

learning algorithm learns from this training pair relationship and produces an inferred function. 

Specifically, in supervised learning, a teacher provides a category label or cost for each pattern in the 

training set that is used as a classifier. In this case, a ‘true’ category label is not inserted in examining 

the relationship between features. Therefore, significant features are only concluded on the basis of 

their weight without identifying the desired egg class. Hence, a complete egg grading system using 

statistical pattern recognition approach is developed to investigate features. 

3.  System Development 

Firstly, digital images are taken as preliminary data. Then, image processing and egg feature 

measurement are conducted. Lastly, classification process is carried out. 

3.1.  Image Acquisition 

A digital camera (a FUJIFILM camera of 8.1 MP) is used to capture images of graded eggs. An 

illumination box with a dimension of 100 cm x 100 cm is developed for egg placement to enable light 

adjustment and light noise removal. Two bulb lamps with yellow light are attached on top of the box. 

The distance between the lens and egg is approximately 200 mm. Figure 5 shows the overview of the 

hardware setup. 

 



5

1234567890‘’“”

iCITES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 342 (2018) 012003 doi:10.1088/1757-899X/342/1/012003

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Image acquisition environment and setup. Figure 6. Original image. 

 

A total of 120 egg images that consisted of 30 eggs from each of four grades (A-D) are captured. 

The sample of image is shown in Figure 6. 

3.2.  Image Processing Tasks 

Before geometric features can be measured, the images should be processed first to obtain the final 

image containing only [1, 0] binary values. Firstly, original RGB images are cropped to remove 

unwanted background. This procedure is essential because the image should show only the centre and 

a small amount of the total area (Figure 6). Accordingly, the amount of time executions for the next 

tasks can be reduced. This process finds the centre of image pixel firstly and then creates a rectangle 

box that covers the area of egg. Lastly, the box rectangle size is cropped, and the targeted image is 

saved in the database. 

Secondly, the cropped image is converted to greyscale image. Thresholding process is executed on 

greyscale image by using manually setup level. In this case, the ideal level of 150 is used to convert to 

binary image. The smoothing of binary images involves two stages. The hole in the image is filled 

firstly and then the image is smoothened using the ‘bwareaopen’ function. The function checks the 

connection of pixels to its neighbourhood with low number of pixels. By implementing this function, 

some noises outside the egg can be removed given that the connected pixels present extremely lower 

number of pixels compared with those of the targeted image. The result of all image processing tasks 

is shown in Figure 7. 

 

       
(a)                              (b)              (c)              (d) 

Figure 7. Processed egg image, (a) original image, (b) cropped image, (c) greyscale image, (d) 

final binary image. 

Seven features are used as in Case Study 2. These features are Area (S) denoted as {f1}, Major 

Axis Length (B) denoted as {f2}, Minor Axis Length (A) denoted as {f3}, Volume ( C
V ) denoted as 

{f4}, Perimeter (P) denoted as {f6} and coefficients of egg shape ( 1
K  denoted as {f7} and 2

K denoted 

as {f8}). One feature, which is Diameter (D) denoted as {f5}, is added. Diameter is a scalar that 
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specifies the diameter of a circle with the same area as a region [11]. Diameter is computed as 4A/π, 

where A is the egg area. 

3.3.  Classification Tasks 

Two feature representation models, namely, principal component analysis (PCA) and information gain 

ratio (IGR), are considered. 

PCA is a statistical method for reducing the dimension of variables. PCA is useful when 

implemented on a large number of variables with some redundancy. In this case, redundancy indicates 

that some of the variables are correlated with one another. The general form for the formula to 

compute scores on the first component extracted in PCA is expressed in the following equation: 

    









p
Xp... bXbXb   C 12121111  (3) 

where C1 is the subject score on principal component (PC) (the first component extracted); b1p is the 

regression coefficient (or weight) for observed variable p, as used in creating first PC; and Xp is the 

subject score on observed variable p.  

IGR is usually used to determine the capability of each single feature to separate the given dataset. 

Entropy is commonly used in the information theory measure and characterises the purity of an 

arbitrary collection of examples. If A is an attribute (feature) and C is the class, then the following 

equations provide the entropy of the class before and after observing the attribute: 

     cpcp
Cc

CH 2log


  (4) 

       acpacp
Cc

ap
Aa

ACH |2log|| 





  (5) 

The amount by which the entropy of the class decreases reflects the additional information about 

the class provided by the attribute and is called information gain. Each attribute Ai is assigned a score 

on the basis of the information gain between itself and the class, as follows: 

     CAHCHAHIG iii
,  (6) 

k-nearest neighbour (k-NN) is used for classification purposes. k-NN is a method for classifying 

objects on the basis of closest training examples in the feature space. k-NN is a type of example-based 

learning or lazy learning where the function is only approximated locally and all the computation is 

deferred until classification. This algorithm is a simple machine learning algorithm in which an object 

is classified using a majority vote of its neighbours. The object is then assigned to the class, which is 

the most common amongst its k-NN. The neighbours are taken from a set of objects for which the 

correct label is known. The learning in this model is based on storing all the training instances that 

correspond to points in an n-dimensional space along with their class labels, and classification is 

delayed until a new instance arrives.  

4.  Experimental Results 

A total of 120 egg images from four classes are used in the experiments with 10-fold cross validation 

for classifier evaluation. The performance evaluation is examined by the recognition accuracy through 

the presented formula: 

T
M

C
M

RC   
(7) 

where MC presents the number of correct classified eggs in each class, and MT is the number of all eggs 

in all classes. The experiments are conducted on four different ways:  

(i) The egg features {f1:f8} are used as starting features to find the best single feature using IGR 

theory. 

(ii) The sorted features are {f5 = 0.655, f4 = 0.643, f3 = 0.571, f2 = 0.531, f7 = 0, f6 = 0, f8 = 0}, 

from the top to the bottom ranking features. Two starting features of all features (original) and 
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two of the best features of > 0.5 information gain value {f5, f4, f3, f2} are used for 

classification process. 

(iii) The feature extraction using PCA is implemented on seven features {f1:f8} for comparison 

with other feature representation techniques. Three PCs are retained and selected as starting 

features. The three PCs cover 95% of total variance for the seven features. 

(iv) The classification process uses five different distance functions in linear k-NN: (a) Euclidean 

distance, (b) Manhattan distance, (c) Minkowski distance, (d) Filtered distance and (e) 

Chebychev distance. One nearest neighbour 1-NN is set for the entire experiments. 

Table 2 shows the average recognition accuracy using weight-based grading as a referred class 

(egg grading). As shown in Table 2, the recognition accuracy for PCA is better than using the 

combination of all original features {f1:f8} and selected several best single features {f5, f4, f3, f2} by 

at least 2%−4%. Comparing the distance function methods in k-NN shows some result differences 

among them, thereby increasing the recognition accuracy. However, the accuracy result for this dataset 

only achieves a maximum of 51.67%. As predicted at the beginning of this study, the recognition 

accuracy should be low because the classification process is conducted by referring to supplier’s egg 

grading labelling, that is, using weight measure. Therefore, a new egg class labelling based on shape 

measure is obtained through simple k-means clustering for solving the above-mentioned problem. 

 

Table 2. Average recognition accuracy (weight-based grading).  

No. Method Starting Features 
Recognition Accuracy (%) 

Average (%) 
(a) (b) (c) (d) (e) 

(ii) 
Original features {f1:f8) 41.67 39.17 41.67 40.83 45.83 41.83 

IGR {f5, f4, f3, f2} 41.67 37.50 41.67 38.33 43.33 40.50 

(iii) PCA {f1:f8} 42.50 40.00 42.50 51.67 44.17 44.17 

 

 Table 3 shows that the first 30 images in the database, which are supposed to be in grade A in 

accordance with weight measure, are changed to multiple classes using shape measure after 

performing simple k-means clustering. Five eggs are clustered to class 0, two eggs to class 1, three 

eggs to class 3 and others (majority) are classified as class 2. Many class changes also occur for other 

egg grades in the database. The classification experiments are repeated using a new cluster. Table 4 

shows the recognition accuracy using shape-based grading. The classification results are increased 

dramatically compared with the previous results of weight-based grading. The best recognition results 

are achieved consistently using original features compared with using PCA and single feature set. 

PCA can fully improve the low recognition results for this type of dataset (Table 2). When PCA is 

implemented on good recognition results (Table 4), the results are insignificantly improved.  

 For both datasets, using the best single features (based on IGR theory) also does not help improve 

the results. The reason is that the single feature alone is filtered without considering the combination 

of feature subsets. In the future, wrapper feature selection approach can to be used provide improved 

combination of feature subsets. 
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Table 3. New cluster assigned for egg grade A. 

Image No. New Cluster 

Assigned 
Image No. New Cluster 

Assigned 
Image No. New Cluster 

Assigned 

1 0 11 2 21 2 

2 0 12 2 22 2 

3 2 13 3 23 2 

4 2 14 2 24 0 

5 2 15 2 25 2 

6 2 16 2 26 3 

7 2 17 2 27 3 

8 2 18 2 28 0 

9 2 19 2 29 0 

10 2 20 1 30 1 

 

Table 4. Average recognition accuracy (shape-based grading).  

No. Method Starting Features 
Recognition Accuracy (%) 

Average (%) 
(a) (b) (c) (d) (e) 

(ii) 
Original features {f1:f8) 94.17 95.00 94.17 93.33 94.17 94.16 

IGR {f4, f3, f2} 82.50 83.33 82.50 83.33 77.50 81.83 

(iii) PCA {f1:f8} 91.67 92.50 91.67 96.00 90.83 92.53 

     

5.  Conclusions 

In this study, an automated egg grading system using computer vision is developed. Two methods 

using weight and shape measure are comprehensively investigated. The experimental results show that 

the recognition results are better when the classification process is conducted on the basis of a new 

cluster (shape-cluster). By contrast, the recognition results of weight-cluster are extremely low since 

the shape measure is not related to weight measure (class). Previous researchers have supported the 

strong relation between the two. However, in this study, the relationship is poor as the classification 

results are extremely low by using weight-based grading. Whether the egg class will change using 

shape-based grading is unclear. If the answer is yes, then this system can be implemented to help 

accelerate the speed of grading. Otherwise, further studies are needed to find the best features (based 

on egg image) that are nearly perfectly correlated with weight measure.  
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