DURABILITY STUDIES OF SPENT MUSHROOM COMPOST ASH (SMCA) AS PARTIAL CEMENT REPLACEMENT IN CONCRETE

LOH HUANG MING

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering.

(Supervisor’s Signature)

Full Name : DR. DOH SHU ING
Position : SENIOR LECTURER
Date : 12 JUNE 2017
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : LOH HUANG MING
ID Number : AA13104
Date : 12 JUNE 2017
DURABILITY STUDIES OF SPENT MUSHROOM COMPOST ASH (SMCA) AS PARTIAL CEMENT REPLACEMENT IN CONCRETE

LOH HUANG MING

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2017
ACKNOWLEDGEMENTS

I wish to acknowledge the guidance, advice and assistance given by my supervisor, Dr. Doh Shu Ing and to thank him for his encouragement and motivation, without which this thesis would not be possible. I am also greatly thankful to him for the limitless time he spent in helping through with the writing of the thesis.

In addition, I am also grateful to University Malaysia Pahang for providing us refined equipment and comfortable working environment. Thanks are due to the technicians of the concrete laboratory of the Faculty of Civil Engineering & Earth Resources En. Muhammad Nurul Fakhri, En. Mohd Hafiz, En. Muhammad Fadzil and En. Kamarul Azri for their guidance and instructions during the laboratory works of my research.

Special thanks to Pn. Norazimah from Environmental Engineering Lab for providing chemicals that were needed for my research. I would also like to give special credit to The Grow Enterprise in Maran for supplying me the research material.

Last but not least, I would like to acknowledge my family members for their love and encouragement all the way to the completion of my research works.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background of Study 2

1.3 Problem Statement 2

1.4 Objectives 3

1.5 Scope of Work 3

1.6 Research Significance 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Malaysia Mushroom Industry 6

2.3 Waste from Mushroom Industry 6
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Waste Issue in Malaysia</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Cement</td>
<td>8</td>
</tr>
<tr>
<td>2.6</td>
<td>Aggregates</td>
<td>9</td>
</tr>
<tr>
<td>2.7</td>
<td>Mixing Water for Concrete</td>
<td>10</td>
</tr>
<tr>
<td>2.8</td>
<td>Durability Characteristics</td>
<td>10</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Water Absorption</td>
<td>10</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Sorptivity</td>
<td>11</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Acid Attack</td>
<td>11</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Sulphate Attack</td>
<td>12</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Chloride Attack</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 3 METHODOLOGY</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and Properties</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Cement</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Coarse Aggregate</td>
<td>17</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Fine Aggregate</td>
<td>17</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Water</td>
<td>18</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Spent Mushroom Compost Ash</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Concrete Mixing</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Concrete Casting</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Curing Process</td>
<td>19</td>
</tr>
<tr>
<td>3.6</td>
<td>Slump Test</td>
<td>19</td>
</tr>
<tr>
<td>3.7</td>
<td>Compression Test</td>
<td>20</td>
</tr>
<tr>
<td>3.8</td>
<td>Water Absorption Test</td>
<td>21</td>
</tr>
<tr>
<td>3.9</td>
<td>Sorptivity</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1 Types of Cement 8
Table 4.1 Compressive Strength of Normal Concrete and SMCA Concrete at 28 Days 25
Table 4.2 Water Absorption of Normal Concrete and SMCA Concrete 26
Table 4.3 Percentage Loss in Weight and Compressive Strength of Normal Concrete and SMCA Concrete after 90 days Acid Immersion. 30
Table 4.4 Percentage Gain in Weight and Compressive Strength of Normal Concrete and SMC Concrete after 90 Days Sulphate Immersion 32
Table 4.5 Percentage Gain in Weight and Average Compressive Strength after 28 Days Chloride Immersion 34
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Malaysia Mushroom Production 2012-2015</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>YTL ORANG KUAT Ordinary Portland Cement</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Spent Mushroom Compost Ash (SMCA)</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Compressive Strength Machine</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Water Absorption Test</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>Epoxy Resin</td>
<td>23</td>
</tr>
<tr>
<td>3.6</td>
<td>Sorptivity Test</td>
<td>23</td>
</tr>
<tr>
<td>3.7</td>
<td>Water Absorption of Normal Concrete and SMCA Concrete</td>
<td>27</td>
</tr>
<tr>
<td>3.8</td>
<td>Absorption Plotted Against Square Root of Time for Normal Concrete and SMCA Concrete</td>
<td>28</td>
</tr>
<tr>
<td>3.9</td>
<td>Sorptivity of Normal Concrete and SMCA Concrete</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Changes of Normal Concrete Before Immersion (left) and After Immersion in 5 % Hydrochloric Acid (right).</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Sorptivity of SMCA Concrete Before Immersion (left) and After Immersion in 5 % Hydrochloric Acid (right).</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Percentage Loss in Weight Due to Acidity</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical Changes of Normal Concrete Before Immersion (left) and After Immersion in 5 % Sodium Sulphate (right).</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Physical Changes of SMCA Concrete Before Immersion (left) and After Immersion in 5 % Sodium Sulphate (right).</td>
<td>32</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage Gain in Weight Due to Sulphate</td>
<td>33</td>
</tr>
<tr>
<td>4.7</td>
<td>Physical Changes of Normal Concrete Before Immersion (left) and After Immersion in 5 % Sodium Chloride (right).</td>
<td>34</td>
</tr>
<tr>
<td>4.8</td>
<td>Physical Changes of SMCA Concrete Before Immersion (left) and After Immersion in 5 % Sodium Chloride (right).</td>
<td>34</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage Gain in Weight Due to Chloride</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\begin{itemize}
\item \textit{g} \quad \text{gram}
\item \textit{m} \quad \text{Meter}
\item \textit{°C} \quad \text{Degree Celcius}
\item \textit{ha} \quad \text{hectare}
\item \textit{mm} \quad \text{Millimetre}
\item \textit{%} \quad \text{percent}
\item \textit{kg} \quad \text{kilogram}
\item \textit{μm} \quad \text{micrometer}
\item \textit{N/mm}^2 \quad \text{Newton per millimeter square}
\item \textit{N/(mm}\cdot\text{s}) \quad \text{Newton per millimetre second}
\item \textit{MPa} \quad \text{Megapascal}
\item \textit{N} \quad \text{Newton}
\item \textit{mm}^2 \quad \text{Millimetre square}
\item \textit{h} \quad \text{Hour}
\item \textit{mm/\sqrt{min}} \quad \text{Millimetre per minute square}
\item \textit{g/cm}^3 \quad \text{Gram per centimetre square}
\item \textit{cm}^2 \quad \text{Centimetre square}
\item \textit{min} \quad \text{Minute}
\item \textit{±} \quad \text{Plus minus}
\item \textit{pH} \quad \text{Potential of hydrogen}
\end{itemize}
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>Aluminium Oxide</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BRE</td>
<td>Building Research Establishment</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>Calcium Hydroxide</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium Ion</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium Oxide</td>
</tr>
<tr>
<td>CEN/TR</td>
<td>European Committee for Standardization Technical Report</td>
</tr>
<tr>
<td>CS</td>
<td>Calcium Sulphate</td>
</tr>
<tr>
<td>C-S-H</td>
<td>Calcium-Silicate-Hydrate</td>
</tr>
<tr>
<td>C₃A</td>
<td>Tricalcium Aluminate</td>
</tr>
<tr>
<td>C₃S</td>
<td>Dicalcium Silicate</td>
</tr>
<tr>
<td>C₃S</td>
<td>Tricalcium Silicate</td>
</tr>
<tr>
<td>DOA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>EN</td>
<td>European Standards</td>
</tr>
<tr>
<td>Fe(OH)₂</td>
<td>Iron (II) Hydroxide</td>
</tr>
<tr>
<td>H⁺</td>
<td>Hydrogen Ion</td>
</tr>
<tr>
<td>HA</td>
<td>Mono-proton Acid</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen Sulphide</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal Solid Waste</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>Sodium Sulphate</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
<tr>
<td>PFA</td>
<td>Pulverized Fuel Ash</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>Si(OH)₄</td>
<td>Silicic Acid</td>
</tr>
<tr>
<td>SMC</td>
<td>Spent Mushroom Compost</td>
</tr>
<tr>
<td>SMCA</td>
<td>Spent Mushroom Compost Ash</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>Sulphate Anion</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>