AXIALLY LOADED OF COLD-FORMED STEEL COLUMNS WITH OPENING

NURUL ATIKAH BINTI ZULKIPLI

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’s DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering.

(Supervisor’s Signature)

Full Name : KHALIMI JOHAN BIN ABD HAMID
Position : LECTURER
Date : 16 JUNE 2017
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at University Malaysia Pahang or any other institutions.

__
(Student’s Signature)

Full Name : NURUL ATIKAH BINTI ZULKIPLI
ID Number : AA13099
Date : 16 JUNE 2017
AXIALLY LOADED OF COLD-FORMED STEEL COLUMNS WITH OPENING

NURUL ATIKAH BINTI ZULKIPLI

Thesis submitted in fulfillment of the requirements
for the award of the
Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2017
ACKNOWLEDGEMENTS

First and foremost, thanks to God for giving the strength and spirit which allows me to accomplish this final year project as requirement to graduate and acquire in a Bachelor of Civil Engineering from University Malaysia Pahang (UMP).

I would like to express my sincere gratitude to my advisor, Mr. Khalimi Johan Bin Abd Hamid for the continuous support of my research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my final year project.

Not forget to the FKASA technical lab staff who helping me in finishing my experimental testing. I always grateful with their kindness and willingness to teach and helping me.

Not forget, millions of thanks and gratitude appreciations to my parents, Zulkipli Bin Jusoh and Zauyah Binti Pa and also my siblings. Without their encouragement, understanding and financial support, it would have been impossible for me to finish this thesis.

Last but not least, I would like to thanks all my team members and also beloved friends, Nurul Amira Binti Amilruddin, Nur Idayu Binti Ibrahim, Nur Zayani Binti Zaharudin, Siti Robiah Binti Arshad, Nur Asyikin Binti Ruhainuddin, Nur Fathin Nadhirah Binti Mohd Noor and Nur Hasbazilah Binti Rusli for always there in my ups and down.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 What is Cold-formed 1

1.2.1 Example of Usage of Cold-formed Steel 3

1.3 Problem Statement 4

1.4 Research Objective 5

1.5 Research Scope 5

1.6 Significance of Research 6

CHAPTER 2 LITRATURE REVIEW 7

2.1 Introduction 7

2.2 Characteristic of Cold-formed Steel Members 8

2.2.1 Cold-forming Process 9
2.2.2 Cold-formed Steel Column 9
2.2.3 Advantages of Cold-formed Steel 9

2.3 Imperfection of Cold-formed Steel 10
 2.3.1 Local Buckling 11
 2.3.2 Distortional Buckling 11
 2.3.3 Flexural - Torsional Buckling 12

2.4 The Design Standards for Axial Load 12
 2.4.1 Direct Strength Method 12

2.5 Effect of Axially Loaded Cold-formed Steel Column 13

2.6 Previous Research Paper 14
 2.6.1 Experiment on Cold-formed Steel Columns with Holes 14

CHAPTER 3 METHODOLOGY 16

3.1 Introduction 16
3.2 Experimental Investigation 17
3.3 Material Selection 18
3.4 Section Parameter 18
3.5 Operation Set-up and Loading 18
3.6 Schematic Diagram 21

CHAPTER 4 RESULT AND DISCUSSIONS 26

4.1 Introduction 26
4.2 Vertical Displacement 26
4.3 Lateral Displacement 29
 4.3.1 Specimen C-2 30
 4.3.2 Specimen C-3 31
4.3.3 Specimen C-4 32
4.3.4 Specimen C-5 33
4.3.5 Specimen C-6 34
4.3.6 Specimen C-7 35
4.4 Failure Mode 36

CHAPTER 5 CONCLUSION 39
5.1 Conclusion 39
5.2 Recommendation 40

REFERENCES 41

APPENDIX A 43
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Parameter magnitudes of the cross-section</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>Measured Specimen Dimensions and Experimental Results</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Example of cold-formed steel</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>House made up from cold-formed steel</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Cold-formed steel framing</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Example of cold-formed steel with different position of openings</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Common shapes for cold-formed steel</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Roof system using cold-formed</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Type of buckling in cold-formed</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>C-Section in Compression Showing Local, Distortional And Lateral-Torsional Buckling</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Project flow chart</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Roll forming process of cold-formed steel</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Series of cold-formed C section with various position of openings</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Picture (a) and (b) show the support at the top and bottom of the specimen</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Bearing plate at the bottom</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Bearing plate at the top</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Schematic Diagram of Opening</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Schematic drawing of transducers position</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Schematic drawing of series of cold-formed C section</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Schematic drawing of single C section column full section</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Universal testing machine and transducers set-up</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Schematic diagram of specimen set-up</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.13</td>
<td>Apparatus set-up in laboratory</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.14</td>
<td>Tinius Olsen testing machine</td>
<td>25</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Load versus vertical displacement graph</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Load versus lateral displacement graph for all specimen</td>
<td>29</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Load versus lateral displacement graph C-2</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Load versus lateral displacement graph C-3</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Load versus lateral displacement graph C-4</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Load versus lateral displacement graph C-5</td>
<td>33</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Load versus lateral displacement graph C-6</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Load versus lateral displacement graph C-7</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Front view</td>
<td>36</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Back view</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

LVDT Linear Vertical Displacement Transducer