THE DURABILITY STUDY OF QUARRY DUST AS SAND REPLACEMENT IN CONCRETE

TEO LEK KUAN

B. ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

THE DURABILITY STUDY OF QUARRY DUST AS SAND REPLACEMENT IN CONCRETE

TEO LEK KUAN

Thesis submitted in fulfilment of the requirements for the award of the degree of B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering

(Supervisor's Signature)		
Name of Supervisor	:	DR. DOH SHU ING
Position	:	SENIOR LECTURER
Date	:	13 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

(Student's Signature) Name : TEO LEK KUAN ID Number : AA13182 DATE : 13 JUNE 2017 Dedicated to my parents, for their love and devotion making me be who I am today

ACKNOWLEDGEMENTS

First of all, I would like to thank University Malaysia Pahang, my university along the degree programme for providing me a good environment and a lot of resources in helping me to complete this study.

I would like to express my deepest appreciation to my research supervisor, Dr Doh Shu Ing, who provide guidance from the beginning until to end of the study. Dr. Doh gave me a lot of precious information and instruction through his own experience and knowledge. His consistent encouragement is a motivation force to me that push me to go further.

Next, I would like to express my special thanks to my research panel, Dr Nor Ashikin bt Muhamad Khairussaleh and Cik Ezahtul Shahreen bt Ab Wahab. Thanks for their useful recommendation and opinion that give great improvement of the research.

Moreover, I am really appreciate the knowledge that have been given by all the lecturers whom have taught me along the study. They always help me in getting more valuable knowledge and lead me to learn further.

I would also like to thank to my friend, Lim Yong Zhao who always lend me a hand in obtaining information and helping me in laboratory work.

Last but not least, I would like to express sincere gratitude to my parents Mr. Teo Hock Chin and Mrs. Lim Ah Bian for their kind of support and lovely encouragement all the way until I have complete my study.

TABLE OF CONTENTS

Page

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	3
1.3	Objective	4
1.4	Scope of Study	4
1.5	Research Significant	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2 V	Waste Materials Use as Sand Replacement	6
	2.2.1 Copper Slag	6
	2.2.2 Washed Bottom Slag	7
	2.2.3 Foundry Sand	8
	2.2.4 Glass Powder	9
	2.2.5 Crushed Spent Fire Bricks	9
	2.2.6 Quarry Dust	10
2.3	Durability Tests	11
	2.3.1 Acid Resistance Test	11
	2.3.2 Sulphate Resistance Test	12

2.3.3	Chloride Resistance Test	13
2.3.4	Sorptivity Test	13
2.3.5	Water Absorption Test	14

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introduction	
3.2	Preparation of Material	17
	3.2.1 Ordinary Portland Cement	17
	3.2.2 Fine Aggregate	18
	3.2.3 Coarse Aggregate	18
	3.2.4 Quarry Dust	19
	3.2.5 Water	19
	3.2.6 Hydrochloric Acid Solution	19
	3.2.7 Sodium Sulphate Solution	20
	3.2.8 Sodium Chloride Solution	20
3.3	Concrete Mix Design	20
3.4	Test for Fresh Concrete	20
	3.7.1 Slump Test	21
3.5	Tests for Hardened Concrete	21
	3.5.1 Compressive Strength Test	21
3.6	Durability Tests	22
	3.6.1 Acid Resistance Test	22
	3.6.2 Sulphate Resistance Test	23
	3.6.3 Chloride Resistance Test	23
	3.6.4 Sorptivity Test	24
	3.6.5 Water Absorption Test	24

CHAPTER 4 RESULTS AND DISCUSSIONS

Introduction	
Aggregate Characterisation	26
4.2.1 Sieve Analysis Test Fresh Concrete Properties	26 28
4.3.1 Slump Test Durability Tests	28 29
 4.4.1 Acid Resistance Test 4.4.2 Sulphate Resistance Test 4.4.3 Chloride Resistance Test 4.4.4 Sorptivity Test 4.4.5 Water Absorption Test 	30 32 35 38 40
	 Aggregate Characterisation 4.2.1 Sieve Analysis Test Fresh Concrete Properties 4.3.1 Slump Test Durability Tests 4.4.1 Acid Resistance Test 4.4.2 Sulphate Resistance Test 4.4.3 Chloride Resistance Test

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	43
5.2	Conclusions	43
5.3	Recommendations	45
REFEI	RENCES	46
APPEN	NDICES	49
А	Compressive Strength Result	49
В	Weight Result	50
С	Acid Resistance Result	51
D	Sulphate Resistance Result	52
E	Chloride Resistance Result	53
F	Sorptivity Result	54
G	Water Absorption Result	55
Н	Photo of Laboratory Preparation	56

LIST OF TABLES

Table No.	Title	Pages
2.1	Physical properties of bottom ash	7
2.2	Chemical characteristics of bottom ash	8
2.3	Physical properties of quarry dust and natural sand	10
2.4	Chemical composition of quarry dust and natural sand	11
4.1	Quarry dust sieve analysis result	27
4.2	Slump test result	28
4.3	Acid resistance result in weight	30
4.4	Acid resistance result in compressive strength	31
4.5	Sulphate resistance result in weight	33
4.6	Sulphate resistance result in compressive strength	34
4.7	Chloride resistance result in weight	35
4.8	Chloride resistance result in compressive strength	36
4.9	The weight of concrete according to time	38
4.10	Water absorption of CC and QDC	40

LIST OF FIGURES

Figure No.	Title	Pages
3.1	Flow chart of this research	16
3.2	Orang Kuat Cement	17
3.3	River sand	18
3.4	Coarse aggregate	19
3.5	Quarry dust	19
3.6	Compressive strength test machine	22
4.1	Grading curve of quarry dust	27
4.2	Slump of CC	29
4.3	Slump of QDC	29
4.4	Performance of sulphate resistance according to weight	30
4.5	Performance of acid resistance according to compressive strength	31
4.6	Aggregates can be seen obviously after submerged in HCl solution	32
4.7	Performance of sulphate resistance according to weight	33
4.8	Performance of sulphate resistance according to compressive strength	34
4.9	Performance of choride resistance according to weight	36
4.10	Performance of chloride resistance according to compressive strength	37
4.11	Performance of sorptivity test	38
4.12	Water level is 10mm above the base of the concrete	39
4.13	Performance of water absorption test	40
4.14	Concrete fully submerged in water	41

LIST OF SYMBOLS

%	Percentage
mm	Millimeter
N/mm ²	Newton per millimeter square
kg	Kilogram
Ν	Newton
\mathfrak{C}	Degree Celsius
Σ	Sum
w/c	Water to cement ratio
mm ²	Millimeter square
min	Minute
μm	Micrometer
MPa	Mega Pascal
±	Plus-Minus

LIST OF ABBREVIATIONS

American Society for Testing and Materials ASTM BS **British Standard** European Standards EN Ordinary Portland Cement OPC Hydrochloric Acid HCl Na_2SO_4 Sodium Sulphate Sodium Chloride NaCl CC **Conventional Concrete** QDC Quarry Dust Concrete SCC Self-Compacting Concrete