SKID RESISTANCE PERFORMANCE ENHANCEMENT USING DIFFERENT MACROTEXTURE PARAMETERS IN CHIP SEAL

THEN KANG JIN

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering (Hons).

(Supervisor’s Signature)
Full Name : INTAN SUHANA BINTI MOHD RAZELAN
Position : SENIOR LECTURER
Date : 16 JUNE 2017
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : THEN KANG JIN
ID Number : AA13192
Date : 16 JUNE 2017
SKID RESISTANCE PERFORMANCE ENHANCEMENT USING DIFFERENT MACROTEXTURE PARAMETERS IN CHIP SEAL

THEN KANG JIN

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2017
ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor, Dr. Intan Suhana binti Mohd Razelan for the continuous encouragement, advice, support and guidance in making this study possible. Her guidance helped me in all the time of research and writing this thesis.

I would like to thank you my beloved family for encouraging me with their best wishes. Appreciation also expressed to my fellow friends who always give suggestions to improve my performance in this study.

Last but not least, thank you to all who are involved directly or indirectly in ensuring the smoothness of this study. Thank you so much.
TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENT vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 BACKGROUND OF STUDY 1

1.1.1 Skid Resistance 1

1.1.2 Pavement Surface Characteristics 1

1.1.3 Macrotecture 2

1.1.4 Chip Seal 3

1.2 PROBLEM STATEMENT 3

1.3 RESEARCH OBJECTIVES 4

1.4 SCOPE OF RESEARCH 5

1.5 SIGNIFICANCE OF RESEARCH 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 SKID RESISTANCE 6
CHAPTER 3 METHODOLOGY

3.1 INTRODUCTION 17
 3.1.1 Flow Diagram for Methodology 17
 3.1.2 Flow Diagram for Laboratory Work 18

3.2 PREPARATION OF CHIP SEAL ON ASPHALT CONCRETE PAVEMENT SAMPLES 20
 3.2.1 Preparation of Asphalt Concrete Pavement Samples 20
 3.2.2 Determination of Aggregate Sizes of Chip Seal 23
 3.2.3 Brushing of Binder 23
 3.2.4 Spreading of Chip Seal 24

3.3 VOLUMETRIC PATCH METHOD 24
 3.3.1 Test Method 24
 3.3.2 Material and Apparatus 25

3.4 BRITISH PENDULUM TEST 26
 3.4.1 Test Method 26
 3.4.2 Machinery and Apparatus 28

3.5 SUMMARY 28

CHAPTER 4 RESULTS AND DISCUSSION 29

4.1 INTRODUCTION 29

4.2 MEAN TEXTURE DEPTH (MTD) 29
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>PIARC Texture Definitions</td>
<td>2</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Factors which affecting pavement friction</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Temperature corrections for BPN readings using the Transport Research Laboratory rubber slider</td>
<td>15</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Calculation of pavement sample for wearing course (AC 14)</td>
<td>22</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Average diameter of 22 asphalt concrete pavement samples</td>
<td>30</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Mean texture depth of 22 asphalt concrete pavement samples</td>
<td>30</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>British Pendulum Number (BPN) and average BPN of 22 asphalt concrete pavement samples</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Mean texture depth (MTD) and British Pendulum Number (BPN) of 21 asphalt concrete pavement samples</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Difference between microtexture and macrotexture</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Single chip seal & double chip seal</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Example of microtexture and macrotexture</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Sand patch test</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow diagram for methodology</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flow diagram for laboratory work</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Delivering aggregates from store</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Sieve shaker</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Conventional bitumen with grade 80 – 100</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Single chip seals</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Asphalt concrete pavement sample undergoes volumetric patch method</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>The weight of measuring cylinder with sand was measured</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>British pendulum tester</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>MTD from previous study compare with thesis result</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>BPN from previous study compare with thesis result</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Relationship between mean texture depth (MTD) and British Pendulum Number (BPN) of 21 asphalt concrete pavement samples</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

PIARC World Road Association
MTD Mean Texture Depth
MIROS Malaysian Institute of Road Safety Research
BPN British Pendulum Number
JKR Public Works of Malaysia
TNZ Transit New Zealand
ASTM American Society for Testing and Materials
AC Asphaltic Concrete
PCC Portland Cement Concrete