UTILIZATION OF RECYCLED TYRE RUBBER WASTE AS PARTIAL REPLACEMENT OF SAND IN ULTRA-HIGH PERFORMANCE CONCRETE (RUBBERIZED-UHPC)

NUR FADHILAH BINTI MAT NOR

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this thesis/project* is adequate in terms of scope and quality for the award of the degree of Bachelor (Hons.) Degree in Civil Engineering.

(Supervisor's Signature)Full Name: EN. MOHD FAIZAL BIN MD JAAFARPosition: LECTURER UMPDate: 16 JUNE 2017

(Co-supervisor's Signature)Full Name:Position:Date:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name :NUR FADHILAH BINTI MAT NOR ID Number : AA13101 Date : 16 JUNE 2017

UTILIZATION OF RECYCLED TYRE RUBBER WASTE AS PARTIAL REPLACEMENT OF SAND IN ULTRA-HIGH PERFORMANCE CONCRETE (RUBBERIZED-UHPC)

NUR FADHILAH BINTI MAT NOR

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

Alhamdulillah, all thanks to the Allah S.W.T., I was able to complete my final year project successfully as it was prescribed by the department of Civil Engineering of University Malaysia Pahang. With His willing to give me the opportunity and good health during the whole two semester period, the experimental work progress had been done without much constraints. The final thesis was also successfully being completed to relate how much knowledge gained during my experimental work.

I take this opportunity to express a sincere appreciation to my supervisor, Encik Mohd Faizal bin Md Jaafar for his continual support and guidance during the preparation and development of this project. I am also thankful to him for encouraging the use of correct grammar and consistent notation in my writings and for carefully reading and commenting on revision of this dissertation. I would also like to express deep sense of gratitude to the concrete laboratory technician for their logistic facilitations and their continuous guidance.

Above all, I must acknowledge the love and support of my incredible family who has been a constant source of strength, inspiration, and love. A big appreciation and thanks also to my friend who were willing assist me during the experimental work of the research.

TABLE OF CONTENT

DEC	CLARATION	
TITI	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
ТАВ	BLE OF CONTENT	v
LIST	Г OF TABLES	ix
LIST	Γ OF FIGURES	X
LIST	Γ OF SYMBOLS	xii
LIST	Γ OF ABBREVIATIONS	xiii
СНА	APTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives of Study	4
1.4	Scope of Study	4
1.5	Significance of Study	5
СНА	APTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Ultra-high Performance Concrete	6
	2.2.1 Definition of UHPC	6
	2.2.2 Development of UHPC	7

	2.2.3	Advantages of UHPC	9
2.3	Factor	rs Affecting Properties of UHPC	10
	2.3.1	Effect of Different Types of Aggregate in UHPC	10
	2.3.2	Effect of Silica Fume to UHPC	11
	2.3.3	Effect of Chemical Admixture to UHPC	12
	2.3.4	Effect of Low Water Cement (w/c) Ratio to UHPC	12
	2.3.5	Effect of Different Curing Condition to UHPC	13
2.4	Tyre I	Rubber Waste	13
	2.4.1	Introduction	13
	2.4.2	Classification of Recycled Tyre Rubber Waste	14
	2.4.3	The Applications of Rubberized Concrete	14
2.5	Utilization of Recycled Tyre Rubber Waste on Properties of Concrete		15
	2.5.1	Introduction	15
	2.5.2	Effect of RTRW to Workability of Concrete	15
	2.5.3	Effect of RTRW to Compressive Strength of Concrete	16
	2.5.4	Effect of RTRW to Flexural Strength of Concrete	17
	2.5.5	Effect of RTRW to Splitting Tensile Strength of Concrete	17
	2.5.6	Effect of RTRW to Toughness of Concrete	18
	2.5.7	Effect of RTRW to Unit Weight of Concrete	18
	2.5.8	Effect of RTRW to Other Properties	19
2.6	Summ	nary	19
CHA	PTER 3	3 METHODOLOGY	21
3.1	Introd	uction	21
3.2	Raw M	Materials Selection	22
	3.2.1	Ordinary Portland Cement	22

vi

	3.2.2	Coarse Aggregate	22
	3.2.3	Sand	24
	3.2.4	Water	25
	3.2.5	Silica Fume	25
	3.2.6	Chemical Admixture	26
	3.2.7	Recycled Tyre Rubber Waste	27
3.3	Mix P	roportion Design	29
3.4	Preparation of Specimens		30
	3.4.1	Batching, Mixing and Casting	30
	3.4.2	Dimensions of Specimens	33
	3.4.3	Curing Ages	34
3.5	Testin	g Procedures	35
	3.5.1	Compressive Strength Test	35
	3.5.2	Splitting Tensile Strength Test	36
CHA	PTER 4	RESULTS AND DISCUSSION	38
4.1	Introduction		38
4.2	Compressive Strength Test Results		38
	4.2.1	Effect of Different Curing Ages Subjected to Compressive	38
		Strength	30
	4.2.2	Effect of Different Percentages of Recycled Tyre Rubber Waste Subjected to Compressive Strength	40
4.3	Splitti	ng Tensile Strength Test Results	43
1.5	-		15
	4.3.1	Effect of Different Curing Ages Subjected to Splitting Tensile Strength	43
	4.3.2	Effect of Different Percentages of Recycled Tyre Rubber Waste	
		Subjected to Splitting Tensile Strength	45

REFERENCES 5		53
5.2	Recommendation	52
5.1	Conclusion	51
СНАР	TER 5 CONCLUSION AND RECOMMENDATION	51
4.5	Summary	49
4.4	Mode of Failure	48

LIST OF TABLES

Table No.	Title Pa	age
Table 3.1	Mix proportion of plain UHPC and rubberized- UHPCs	30
Table 4.1	Compressive strength of cubic UHPC specimens with 0 % RTRW (Plain UHPC)	39
Table 4.2	Compressive strength of cubic UHPC specimens with 5 % RTRW (Rubberized-UHPC5)	39
Table 4.3	Compressive strength of cubic UHPC specimens with 10 % RTRW (Rubberized-UHPC10)	39
Table 4.4	Compressive strength of cubic UHPC specimens with 15 % RTRW (Rubberized-UHPC15)	39
Table 4.5	Compressive strength of cubic UHPC specimens at 7 days	41
Table 4.6	Compressive strength of cubic UHPC specimens at 14 days	41
Table 4.7	Compressive strength of cubic UHPC specimens at 28 days	41
Table 4.8	Splitting tensile strength of cylindrical UHPC specimens with 0 % RTRW (Plain UHPC)	44
Table 4.9	Splitting tensile strength of cylindrical UHPC specimens specimens with 5 % RTRW (Rubberized-UHPC5)	5 44
Table 4.10	Splitting tensile strength of cylindrical UHPC specimens with 10 % RTRW (Rubberized-UHPC10)	44
Table 4.11	Splitting tensile strength of cylindrical UHPC specimens with 15 % RTRW (Rubberized-UHPC15)	44
Table 4.12	Splitting tensile strength of cylindrical UHPC specimens at 7 days	46
Table 4.13	Splitting tensile strength of cylindrical UHPC specimens at 14 days	46
Table 4.14	Splitting tensile strength of cylindrical UHPC specimens at 28 days	46

LIST OF FIGURES

Figure No.	Title	Page
Figure 3.1	Flow-chart process for experimental programme	21
Figure 3.2	Ordinary Portland Cement Type I	22
Figure 3.3	Natural crushed gravel with nominal size of 10 mm	23
Figure 3.4	Particle size distribution of natural crushed gravel	23
Figure 3.5	Natural river sand with nominal size of 5 mm	24
Figure 3.6	Particle size distribution of natural river sand	24
Figure 3.7	Silica fume used in UHPC mixtures	26
Figure 3.8	Sika VisoCrete 2008 PC	27
Figure 3.9	Crumb rubber with maximum size of 2.36 mm	27
Figure 3.10	Micromized rubber powder with maximum size of 600 μ m	28
Figure 3.11	Particle size distribution of crumb rubber	28
Figure 3.12	Particle size distribution of micromized rubber powder	29
Figure 3.13	Concrete pan mixer used for the mixing process	32
Figure 3.14	Pouring material into concrete pan mixer	32
Figure 3.15	Steel moulds was stored in temperature room for 24 hours after casting	33
Figure 3.16	UHPC specimens for concrete cube compression test specimens	33
Figure 3.17	UHPC specimens for cylindrical concrete splitting tensile strength test	34
Figure 3.18	Plain UHPC and rubberized- UHPC specimens were cured in wate curing	r 34
Figure 3.20	Compressive Strength Testing Machine	36
Figure 3.21	Splitting Tensile Strength test machine	37
Figure 4.1	Comparison of compressive strength of cubic UHPC specimens at different curing ages	40
Figure 4.2	Comparison of compressive strength of cubic UHPC specimens at different percentages of recycled tyre rubber waste	42
Figure 4.3	Comparison of splitting tensile strength of cylindrical UHPC specimens at 7, 14 and 28 days	45
Figure 4.4	Comparison of splitting tensile strength of cylindrical UHPC specimens at different curing ages	47
Figure 4.5	Failure mode of plain UHPC cubic specimen	48
Figure 4.6	Failure mode of rubberized-UHPC cubic specimens	48
Figure 4.7	Failure mode of plain UHPC cylindrical specimen	49

LIST OF SYMBOLS

°C	Degree celcius
D	Diameter
%	Percentage
kg/m ³	Kilogram per cubic meter
L	Length
mm	Millimeter
MPa	Megapascal
Ν	Newton
Р	Applied load
μm	Micrometer

LIST OF ABBREVIATIONS

BS	British standard
CA	Chemical admixture
CR	Crumb rubber
CRC	Compact reinforced concrete
DSP	Densified small particles
HPC	High performance concrete
HRWRA	High Range Water-Reduce
MDF	Macro Defect Free
MRP	Micromized rubber powder
MS	Microsilica
NC	Normal concrete
OPC	Ordinary Portland cement
PCC	Plain cement concrete
RCR	Recycled crumb rubber
RPC	Reactive powder concrete
RRP	Recycled rubber powder
RTRW	Recycled tyre rubber waste
SCC	Self-compacting concrete
SIFCON	Slurry infiltrated fiber concrete
SF	Silica fume
SP	Superplasticizer
UHPC	Ultra-high performance concrete
UHPFRC	Ultra-high performance fibre reinforced concrete
w/c	Water-cement ratio