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ABSTRACT 

Evolutionary Polynomial Regression (EPR) has been used to determine the total sediment load in selected rivers 
in Malaysia. In order to test the robustness and generalization ability of EPR modelling, the approach that is generally 
adopted is to test the performance of trained EPR models on an independent validation set. If such performance is 
adequate, the model is deemed to be robust and able to generalize. When evaluating EPR models, consideration must be 
given not only to their predictive accuracy but also to the interpretive ability of the models. This can be done by carrying 
out a sensitivity analysis that quantifies the relative importance of model inputs to the corresponding outputs. In this paper, 
the robustness of EPR models is investigated in a case study of predicting the total sediment load at Malaysian rivers. A 
procedure that tests the robustness of the predictive ability of EPR models is introduced. The results indicate that the good 
performance of EPR models in the data used for model calibration and validation also perform in a robust fashion over a 
range of data used in the model calibration phase. The results also indicate that validating EPR models using the procedure 
applied in this study are essential in order to investigate their robustness. 
 
Keywords: evolutionary polynomial regression, total sediment load, robustness, prediction. 

 
INTRODUCTION 

Predicting total sediment load in rivers normally 
used to prevent flooding especially during heavy rains. A 
sedimentation process in rivers changes the shapes and 
pattern of riverbank. Researchers had developed a model 
to identify the sedimentation process for estimation of the 
total sediment load. Some of these models include 
Engelund and Hansen (1967), Graf (1971), Ackers and 
White (1973), Yang and Molinas (1982), Van Rijn (1986), 
Karim (1998) and Nagy et al. (2002). These models were 
developed based on flume data from western countries, 
including America and Western Europe, and have not been 
widely used or evaluated in other parts of the world 
(Sinnakaudan et al., 2006). Since the 1990’s, some 
Malaysian researchers have developed models based on 
Malaysian conditions (e.g. (Ariffin J, 2004; Chan et al., 
2005; Sinnakaudan et al., 2006). In this paper, 
Evolutionary Polynomial Regression (EPR) which is a 
data-driven hybrid regression technique was used to 
develop a new model for total sediment load. 
 
EVOLUTIONARY POLYNOMIAL REGRESSION 
(EPR) 

EPR is developed by Giustolisi and Savic (2006). 
It can be defined as a non- linear global stepwise 
regression, providing a symbolic formula of models. . The 
EPR technique has been used successfully in solving 
several problems in civil engineering (e.g. (Savic et al., 
2006); (Berardi et al., 2008); (Giustolisi et al., 2008)). It 
constructs symbolic models by integrating the soundest 
features of numerical regression (Draper and Smith, 1998) 
with genetic programming and symbolic regression (Koza, 

1992). This strategy provides the information in symbolic 
form expressions, as usually defined and referred to in 
mathematical literature (Watson, 1996). The general form 
of expression in EPR can be presented as follows 
(Giustolisi and Savic, 2006):  
 

                   (1) 
 
where: y is the estimated vector of output of the process; 
m is the number of terms of the target expression; F is a 
function constructed by the process; X is the matrix of 
input variables; f  is a function defined by the user; and aj 
is a constant. A typical example of EPR pseudo-
polynomial expression that belongs to the class of 
equation (1) is as follows (Giustolisi and Savic, 2006): 
 

                                                 (2) 
 
where:  is the vector of target values; m is the length of the 
expression; aj is the value of the constants; Xi is the 
vector(s) of the k candidate inputs; ES is the matrix of 
exponents; and f is a function selected by the user. 

Referring from D. Laucelli et al (2011), EPR is a 
hybrid data-mining modelling technique whose main 
features are explicitly stated in its name. It's called 
Evolutionary because it employs a population based 
strategy for searching optimal models by mimicking the 
evolution of the fittest individual in nature. In particular it 
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employs a Genetic Algorithm (GAs) (Goldberg, 1989) to 
find the optimal sets of exponents in equation (2) within 
the combinatorial search space, as defined by the user 
defined set of exponents. It is Polynomial because EPR 
mathematical structures, e.g. equation (2) are linear with 
respect to their parameters although not necessarily linear 
in their attributes (due to both exponents different from 1 
and possible selection of function f). EPR is actually a 
Regression technique since model parameters of any 
‘pyseudo-polynomial expression’ are computed from data. 
EPR is suitable for modelling physical phenomena, based 
on two features (Savic et al., 2006): (i) the introduction of 
prior knowledge about the physical system/process - to be 
modelled at three different times, namely before, during 
and after EPR modelling calibration; and (ii) the 
production of symbolic formulas, enabling data mining to 
discover patterns which describe the desired parameters. 
In the first EPR feature (i) above, before the construction 
of the EPR model, the modeller selects the relevant inputs 
and arranges them in a suitable format according to their 
physical meaning. During the EPR model construction, 
model structures are determined by following user-defined 
settings such as general polynomial structure, user-defined 
function types (e.g. natural logarithms, exponentials, 
tangential hyperbolic) and searching strategy parameters. 
The EPR starts from true polynomials and also allows for 
the development of non-polynomial expressions 
containing user-defined functions (e.g. natural logarithms). 
After EPR model calibration, an optimum model can be 
selected from among the series of models returned. The 
optimum model is selected based on the modeller’s 
judgement, in addition to statistical performance indicators 
such as the coefficient of determination (CoD). A typical 
flow diagram of the EPR procedure is shown in Figure 2, 
and detailed description of the technique can be found in 
(Giustolisi and Savic, 2006). 
 
CASE STUDY 

338 data from the year 1999 till 2007 at 10 
selected rivers in Malaysia were used to develop the EPR 
model. The data used for model calibration and validation 
were collected from the Department of Irrigation and 
Drainage (DID), Ministry of Natural Resources and 
Environment, Malaysia (hereinafter referred to as the 
DID). The first set of data was collected from the Pari 
River in Taman Merdeka and Kerayong River in Kuala 
Lumpur from 1998 to 1999. The second set of data was 
undertaken at the Kinta River catchment, which consists 
of four rivers including Kinta River, Raia River, Pari 
River and Kampar River. The third set of data took place 
over the period 2000 to 2002, at the Langat River 
catchment area, comprising Langat River, Lui River and 
Semenyih River. The fourth and final set of data was 
completed at the Kulim River in 2007. 
 
 
 

MODEL DEVELOPMENT USING EPR 
The EPR model was developed using the 

available software package, EPR Toolbox Version 2 
(Laucelli et al., 2009). A set of 338 data represents the 
sediment transport features of ten different rivers across 
Malaysia were used in this study. 

The first important step in the development of the 
EPR model was to identify the potential model inputs and 
outputs. Based on previous studies carried out by many 
researchers (e.g. Sinnakaudan, 2008), for the purpose of 
this study, eight inputs were utilized, having deemed them 
to be the most significant factors affecting the sediment 
transport. These inputs include the hydraulic radius (R), 
flow depth (Yo), flow velocity (V), median diameter of 
sediment load (d50), stream width (B), water surface slope 
(So), fall velocity (s) and flow discharge (Q). The total 
sediment load (Tj) was taken as the output model. 

The data division is taken as a next step in the 
development of the EPR model. The data were randomly 
divided into two sets: a training set for model calibration 
and an independent validation set for model verification. 
In dividing the data into their sets, the training and testing 
sets were selected to be statistically consistent, thus, 
represent the same statistical population, as recommended 
by Shahin et al. (2004). In total, 271 data cases (80%) of 
the available 338 data cases were used for training, and 67 
data cases (20%) were used for validation 

The following step in the development of the 
EPR model was selecting the related internal parameters 
for evolving the model. This was carried out by a trial-
and-error approach in which a number of EPR models 
were trained, using the parameters given in Table-1, until 
the optimum model was obtained. A more detailed 
description of the modelling parameters used in Table-2 
can be found in the EPR Toolbox manual (Laucelli et al., 
2011). 
 

Table-1. Internal parameters used in the EPR modeling. 
 

Parameter EPR setting 

Regression type Statistical 

Polynomial 
structure 

Y = sum(ai×X1×X2×f(X1)×f(X2))+ao 

Function type Exponent 

Term [1:5] 

Range of 
exponents 

[0, 0.5, 1, 2] 

Generation 10 

Offset (ao) Yes 

Constant 
estimation 

method 
Least Square 
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Performance indicators 
The trial-and-error approach in which a number 

of EPR models were trained with different internal 
modelling parameters, gave three models with the best 
results, as shown in Table-2 and graphically in Figure-1(a) 
and 1(b). It can be seen from Figure-1(a) and Figure-1(b) 
that there is not a great deal of scatter around the line of 
equality between the measured loads and the validation 
set, the performance of the total load model for the three 
models looks similar.  

Five performance measures namely: the 
coefficient of correlation, r, coefficient of efficiency, E, 
root mean squared error, RMSE, discrepancy ratio, DR, 
and Akaike information criterion, AIC was used to 
evaluate the relationship between the measured and 
predicted total loads. The coefficient of correlation, r, is 
the performance measure that is widely used in civil 
engineering but sometimes can be biased in reflecting 
higher or lower values, leading to misleading model 
performance. The coefficient of efficiency, E, is an 
unbiased performance estimate and provides an 
assessment of the overall model performance, which can 
range from minus infinity to 1.0, with higher values 
indicating better agreement (Legates and Mc Cabe, 1999). 
The RMSE has the advantage in that large errors receive 
much greater attention than small errors, as indicated by 
Shahin et al. (2004). The discrepancy ratio, DR, as 
indicated by Sinnakaudan et al. (2006) is the ratio between 
the predicted and measured total sediment loads, and a 
model is considered to be suitable if its discrepancy ratio 
falls within the range of 0.52.0. The AIC gives an 
estimate of the expected relative distance between the 
fitted model and the unknown true model. The smallest 
value of AIC is considered to be the most favourable 
amongst the set of candidate models (Shaqlaih et al., 
2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table-2.  Performance results of the EPR models in the 
training and testing sets. 

 

Performance 
measurement 

Model‒1 Model‒2 Model‒3 

Correlation coefficient, r 

Training 0.72 0.72 0.73 

Validation 0.74 0.74 0.74 

Coefficient of efficiency, E 

Training 0.52 0.52 0.52 

Validation 0.55 0.55 0.55 

RMSE 

Training 2.46 2.46 2.46 

Validation 2.41 2.41 2.41 

Discrepancy ratio, DR 

Training 0.68 0.69 0.69 

Validation 0.64 0.66 0.66 

AIC 

Training 0.00 4.10 4.00 

Validation 0.00 5.20 5.20 

 

 
(a) 

 

 
(b) 

 

Figure-1. Performance of the EPR model: (a) Training 
set; (b) Validation set. 
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Three best EPR models in Table-2 shows that r, 
E, RMSE and DR close to each other and all three models 
have consistent performance in both the training and 
testing sets. However, based on the AIC results, it shows 
that Model‒1 is superior to the other models and can be 
considered to be optimal. As can be seen in the following 
equations (i.e. equation. 3‒5, Model‒1 has only 6 input 
variables, equation (3), whereas both Model-2 equation (4) 

and Model‒3 (equation 5) have 8 input variables each. It 
should be noted that the performance results of these 
models are considered to be acceptable in representing the 
sediment transport problem compared to those of the most 
available methods, as will be seen in the next section. The 
symbolic formulae obtained from the EPR Models are as 
follows:  

 
Tj = 226356.81 V d50

2 + 18.37 Q 0.5 Yo So
0.5 e 0.5V + 0.000012 Q d50

0.5 e0.5B                        (3) 
 
Tj = 222250.88 V d50

2 + 18.17 Q 0.5 Yo So
0.5 e0.5V   + 0.000012 Q d50

0.5 e0.5B +1.23 Q Yo S
2 R2 SO e2s+2R       (4) 

 
Tj = 162.24 B2 Yo s

2 R2 So
2 + 222624.92 V d50

2 + 18.15 Q 0.5 Yo So
0.5 e0.5V   + 0.000012Qd50

0.5e0.5B + 0.000023 Q2 s R2 e2R      (5) 
 
where: Tj is the total sediment load, V is the flow velocity, 
d50 is the median diameter of sediment load, Q is the flow 
discharge, Yo is the flow depth, So is the water surface 
slope, B is the stream width, R is the hydraulic radius and 
s is the fall velocity. 
 
Robustness study 

In order to confirm the robustness of the best 
EPR model (Model 1), an additional validation approach 
was utilized, as proposed by Shahin et al. (2004). The 
approach consists of carrying out a parametric study, part 
of which includes investigating the response of the EPR 
model output to changes in its inputs. All input variables, 
except one, were fixed to the mean values used for 
training, and a set of synthetic data (between the minimum 
and maximum values used for model training), was 
generated for the input that was not set to a fixed value. 
The synthetic data set was generated by increasing its 
values in increments equal to 5% of the total range 
between the minimum and maximum values, and the 
model response was then examined. This process was 
repeated using another input variable until the model 
response has been tested for all input variables.  

The robustness of the model were tested by 
examining how well the trends of the total sediment loads, 
over the range of the inputs examined, are in agreement 
with the underlying physical meaning of sediment 
problem. The results of the robustness study are shown in 
Figure-2, which agree with hypothetical expectations 
based on the known physical behaviour of the total 
sediment load. Figures-2 (a‒h) shows that the predicted 
total sediment load increases in a relatively consistent and 
smooth fashion, as the discharge, velocity, width, river 
depth, median diameter, slope, hydraulic radius and fall 
velocity increase. Input parameter for Model 1 (green line) 
stated in Figure-2 (a-f), while input parameter for Model 2 
(black line) and Model 3 (red line) stated in Figure-2(a-h).  
 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 
(g) 

 

 
(h) 

 

Figure-2. Robustness study showing the EPR model 
ability to generalise. 

 
Sensitivity analysis  

The interpretive ability of the model also been 
considered when evaluating the best EPR model. This can 
be done by carrying out a sensitivity analysis that 
quantifies the relative importance of model inputs to the 
corresponding outputs. The relative importance was 
determined using three different sensitivity measures, 
namely the range (ra), gradient (ga) and variance (va), in 
this study (Cortez et al., 2009): 
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For all of the above metrics, the higher the value 
the more relevant is the input. Thus, the relative 
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importance (Ra) can be given as follows (Cortez et al., 
2009): 
 

 


I

i
iaa ssR

1
(%)100/

      (9) 
 
where: ya,j  is the sensitivity response for xa,j and s is the 
sensitivity measure (i.e. r, g or v). Figure 3 shows the 
graphical representation of the relative importance 
measures for Model 1 in the form of bar charts. The first is 
simply the sensitivity according to range. Consider the 
sensitivity results for the model inputs in Figure-3. The 
relative importance model inputs for total load according 
to range are determined by using equation 6. A second 
possible measure is the variance produced in the output 
when the input is moved through its entire range. Equation 
7 were use to determine the sensitivity according to 
variance. A third possible measure for sensitivity is the 
average gradient over all the intervals. Equation 8 used to 
determine the sensitivity according to the gradient 
measure. The results in Figure-3 show that all three 
measures capture the higher sensitivity of river depth, Yo 
as input variable compared to others variables. It can be 
seen that the river depth, Yo, seems to provide greater 
importance than the other input variables for almost all 
sensitivity measures used, while the flow velocity, V, and 
median diameter of sediment load, d50, hold less 
importance than the other input variables. 
 

 
 

 

 
 

Figure-3. Sensitivity analysis showing the relative 
importance of the EPR model inputs. 

 
CONCLUSIONS 

Using data provided by Department of Irrigation 
and Drainage (DID), Ministry of Natural Resources and 
Environment Malaysia, new sediment transport model was 
develop using Evolutionary Polynomial Regression 
technique. From that, three EPR model were selected and 
had been analyses to get the best model. The performance 
of the three EPR model in relation to the validation set 
showed less scattering around the line of equality between 
the measured and predicted total sediment loads. The 
statistical analyses used for comparison included the 
coefficient of correlation, r, root mean squared error, 
RMSE, coefficient of efficiency, E, discrepancy ratio, DR, 
and Akaike information criterion, AIC. The results shows 
that EPR Model 1 is the best model with r, RMSE, E, DR 
and AIC were found to be equal to 0.74, 2.41, 0.55, 0.64 
and 0.00, respectively.  

The EPR Model 1 was also found to be robust in 
terms of its generalisation ability as its behaviour was 
found to be in agreement with the underlying physical 
meaning of sediment transport. The sensitivity analysis 
was also carried out to check the relative importance of 
model inputs to the corresponding output. The sensitivity 
analysis indicated that the river depth, Yo, provided greater 
importance than the other input variables, while the flow 
velocity, V, and median diameter of sediment load, d50, 
and hold less importance than the other input variables. 
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