FINITE ELEMENT ANALYSIS ON REINFORCED CONCRETE COLUMN WITH TRANSVERSE OPENINGS

TAN KEEN HONG

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering

Signature	:	
Name of Supervisor	:	MOHD ARIF BIN SULAIMAN
Position	:	LECTURER
Date	:	19 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	TAN KEEN HONG
ID Number	:	AA13150
DATE	:	19 JUNE 2017

FINITE ELEMENT ANALYSIS ON REINFORCED CONCRETE COLUMN WITH TRANSVERSE OPENINGS

TAN KEEN HONG

Thesis submitted in fulfilment of the requirements for the award of the degree of B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to Universiti Malaysia Pahang (UMP) for giving me an opportunity to conduct this project and the staff of Faculty of Civil Engineering and Earth Resources for their help to complete my project.

Apart from that, I am sincerely grateful and I would like to take this opportunity to thank my supervisor, Mohd Arif bin Sulaiman for his useful guidance, suggestion and advice to help me to complete my project. Without his assistance, I would not have accomplished my project.

In addition, I would like to grab this opportunity to thank my friends, Kun Chee Yong, Loo Kian Loon and Tan Woon Han for giving ideas and feedbacks on my work.

Lastly, a deep appreciation to my dear parents and family members for their love and support to me throughout the project.

TABLE OF CONTENTS

	TITLE	PAGE
DEC	LARATION	
ACK	NOWLEDGEMENT	ii
ABS	ГRАК	iii
ABS	ГКАСТ	iv
TAB	LE OF CONTENTS	v
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
СНА	PTER 1 INTRODUCTION	
1.1	General	1
1.2	Problem Statement	2
1.3	Objective of Study	2
1.4	Scope of Study	2
СНА	PTER 2 LITERATURE REVIEW	
2.1	General	7
2.2	Reinforced Concrete	7
2.3	Reinforced Concrete Column	8
2.4	Reinforced Concrete Column Design	8
2.5	Failure Modes Of Column	9
2.6	Effect of The Size of Opening	9
2.7	Effect of The Location of Opening	10
2.8	Finite Element Analysis	10
2.9	ANSYS Elements	11
2.10	Modeling of Steel Reinforcement	12

2.11	Mesh Sensitivity	12
2.12	Definition of Failure of Model	13

CHAPTER 3 METHODOLOGY

3.1	General		14
3.2	Flow C	Chart Of Methodology	15
3.3	Preprocessor		16
	3.3.1	Element Types	16
	3.3.2	Real Constants	16
	3.3.3	Material Properties	18
	3.3.4	Modeling	19
3.4	Solutio	n	25
3.5	Genera	l Postprocessor	29

CHAPTER 4 RESULTS AND DISCUSSION

4.1	General	31
4.2	Deflection of Column Due to Different Opening Size	31
4.3	Deflection of Column Due to Different Opening Location	35
4.4	Crack Pattern of Column Due to Different Opening Size	39
4.5	Crack Pattern of Column Due to Different Opening Location	40

CHAPTER 5 CONCLUSION

REF	EFERENCES	
5.3	Recommendation	42
5.2	Conclusion	41
5.1	General	41

LIST OF TABLES

Table No.	Title	Page
1.1	Properties of concrete and steel	3
1.2	Specifications of column models4	4
4.1	Deflection of column with different opening size	32
4.2	Deflection of column with different opening location	35

LIST OF FIGURES

Figure	No. Title	Page
1.1	Dimension and main reinforcement arrangement of column	5
1.2	Eccentric loading on column cross-section	6
2.1	Geometry and node location of SOLID65	11
2.2	Geometry and node location of LINK8	12
3.1	Flow chart of methodology	15
3.2	Adding element types of model	16
3.3	Adding real constant of concrete	17
3.4	Adding real constant of shear link	17
3.5	Adding real constant of longitudinal steel bar	18
3.6	Adding material properties	18
3.7	Creating block by dimension	19
3.8	Creating solid cylinder	19
3.9	Model with opening	20
3.10	Selecting area to be copied	21
3.11	Copying areas	21
3.12	Dividing volume by area	22
3.13	Merging items	22
3.14	Creating components	23
3.15	Component Manager	23
3.16	Meshing of model	24
3.17	Model after meshing	24
3.18	Applying boundary condition	25

3.19	Applying load	25
3.20	Model after applying boundary condition and load	26
3.21	Basic tab	26
3.22	Sol'n option tab	27
3.23	Nonlinear tab	27
3.24	Advanced NL tab	28
3.25	Solve current load step	28
3.26	Deformed shape	29
3.27	Contour plot	29
3.28	Cracking and crushing	30
4.1	Deflection of C1	32
4.2	Deflection of C2	33
4.3	Deflection of C3	33
4.4	Deflection of C4	34
4.5	Deflection of C5	36
4.6	Deflection of C6	36
4.7	Deflection of C7	37
4.8	Deflection of C8	37
4.9	Deflection of C9	38
4.10	Crack pattern of C1, C2, C3 and C4	39
4.11	Crack pattern of C5, C5, C7, C8 and C9	40