THE UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH A GROUP OF CERAMIC WASTE COLUMN

MOHD HIZZUL SYAFIQ BIN MUHAMED SHUKRI

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

Dedicated to my beloved family

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of in Bachelor of Civil Engineering.

(Supervisor's Signature) Full Name : DR. MUZAMIR BIN HASAN

Position : SENIOR LECTURER

Date : 21. JUNE .2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : MOHD HIZZUL SYAFIQ BIN MUHAMED SHUKRI ID Number : AA13168 Date : 21 JUNE 2017

THE UNDRAINED SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH A GROUP OF CERAMIC WASTE COLUMN

MOHD HIZZUL SYAFIQ BIN MUHAMED SHUKRI

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

Alhamdulillah. Thanks to Allah SWT, the most gracious and most merciful, whom with Him willing giving me strength to complete this Final Year Project. Special thanks to my beloved family, my parents, my brothers and sisters because of their courage and support during the period of completing the thesis. Support and motivates keep me motivated and alive to complete and produce a high quality of thesis.

To my supervisor, Dr. Muzamir bin Hasan, special thanks for all the guidance, motivation and supports, thanks for the time spend with me, idea and courage. The supervision and support that he gave truly help the progression and smoothness of the project. With his presents, teaching and guidance, my final year project gone recognize by university. Not to forget, I would like to thanks to all technicians that help me a lot in conducting the laboratory test in giving guidelines for laboratory work. Without them, it would be impossible for me to start and finished the thesis

Lastly, I would like to express my appreciation to my colleague and as their together and shared their knowledge with me in completing the study, Thanks for being with me through my ups and downs. Thanks for the support, courage and assist me on writing and so on.

Once again, thanks to all of you.

TABLE OF CONTENT

DECLARATION	
DEDICATION	
ACKNOWLEGMENT	
ABSTRAK	iv
ABSTRACT	V
TABLE OF CONTENT	vi
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATION	XV

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objective of Study	4
1.4	Scope of Study	4
1.5	Significant of Study	6

CHAPTER 2LITERATURE REVIEW2.1Soft Clay72.1.1 Compressibility and Consolidation9

	2.2.2 Undrained Shear Strength	10
2.2	Ceramic Waste	12
	2.2.1 Chemical Properties of Ceramic Waste	14
	2.2.2 Physical Properties of Ceramic Waste	16
	2.2.3 Particle Size Distribution	16
	2.2.4 Permeability	18
	2.2.5 Compressibility	19
	2.2.6 Compaction	19
	2.2.7 Shear Strength	20
2.4	Vertical Granular Column	20
	2.3.1 Shear Strength	21
	2.3.2 Consolidation around Vertical Granular Column	27
	2.3.3 Stress Strain Behavior	29

CHAPTER 3 METHODOLOGY

3.1	Introduction	32
3.2	Selection of Material	34
3.3	Laboratory Works	34
3.4	Determination of Physical Properties of Soft Clay	35
	3.4.1 Hydrometer Test	35
	3.4.2 Standard Compaction Test	36
	3.4.3 Falling Head Permeability Test	36
	3.4.4 Specific Gravity Test	37
	3.4.5 Atterberg Limit Test	37
3.5	Determination of Physical Properties of Ceramic Waste	38
	3.5.1 Dry Sieve Test	38
	3.5.2 Specific Gravity Test	39
	3.5.3 Standard Compaction Test	40
	3.5.4 Constant Head Permeability Test	41
	3.5.5 Direct Shear Test	42
	3.5.6 Relative Density Test	42
	3.5.7 One Dimensional Consolidation	43

3.6	Reinforcing Soft Clay with a Group of Ceramic Waste	44
	Column	
	3.6.1 Preparation of Samples	44
	3.6.2 Installation of a Group of CWC	46
	3.6.3 Unconfined Compression Test	49
CHAPTER 4	RESULT AND DISCUSSION	
4.1	Introduction	51
4.2	Summary of Kaolin and Ceramic Waste	52
4.3	Physical Properties	54
	4.3.1 Atterberg Limit Test	54
	4.3.2 Specific Gravity	56
	4.3.3 Particle Size Distribution	56
4.4	Mechanical Properties	59
	4.4.1 Standard Proctor Compaction Test	59
	4.4.2 Permeability	60
	4.4.3 One Dimensional Consolidation Test	61
4.5	Unconfined Compression Test	62
	4.5.1 Stress Strain Behavior	62
	4.5.2 Undrained Shear Strength	64
	4.5.3 The Effect of Column Penetration Ratio	67
	4.5.4 The Effect of Height over Diameter of Column	70
	4.5.5 The Effect of Volume Penetration Ratio	73
CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	
5.1	Introduction	78
5.2	Conclusion	78
5.3	Recommendation	80
REFERENCES		82
APPENDIX		86

LIST OF TABLE

Table No.	Title	Page
2.1	Comparison of index properties of clay in	8
	different places	
2.2	Undrained strength classification of clay	11
2.3	Chemical Properties Of Ceramic Waste	15
2.4	Properties of ceramic fine aggregate	17
2.5	Classification of soil according to permeability value	18
2.6	Effect of area replacement ratio on undrained shear strength	22
3.1	Summary of Laboratory Testing Programme.	34
3.2	Sample with variable of ceramic waste	48
	installation	
3.3	Density of various dimensions of ceramic	49
	waste columns installed in kaolin specimens	
4.1	Summary of Kaolin clay properties	52
4.2	Summary for properties of Ceramic Waste	53
4.3	Comparison of ceramic waste with bottom ash	54
	specific gravity values	
4.4	Comparison of ceramic waste with bottom ash	60
	Permeability test	
4.5	Maximum deviator stress and axial strain values	62
	at different height penetration ratio	
4.6	Results of Unconfined Compression Test (UCT)	65
4.7	Improvement shear strength	66
4.8	Correlations and R ² value	77

LIST OF FIGURES

Figure no.	Title	Page
2.1	Quaternary sediment in Peninsular Malaysia	7
2.2	Ceramic waste powder	13
2.3	Ceramic floor and wall tile waste	13
2.4	Classification of ceramic wastes by type and production process	14
2.5	Particle Size distribution	17
2.6	Column arrangement	23
2.7	Deviator stress at failure for various column penetration ratio	24
2.8	Effect of ratio of column height to diameter	25
2.9	Deformation shape of long stone column	26
2.10	Consolidation response for (a) singular column and (b) group columns	28
2.11	Stress-strain response under uniform undrained loading for singular column	30
2.12	Stress-strain response under uniform undrained loading for singular column at various area replacement ratio	31
3.1	Flowchart of Research Methodology	33
3.2	Sieve shaker	39

3.3	Small Pyknometer in vacuum desiccator	40
3.4	Standard Compaction Test apparatus	41
3.5	One Dimensional Consolidation test	43
3.6	Customized mould set for 50mm diameter and 100mm height specimen	45
3.7	Specimen in the mould was being drilled	46
3.8	Detail arrangement of group column with difference area replacement ratio	47
3.9	Detail arrangement of group column with difference height penetration ratio	47
3.10	Sample testing using Unconfined Compression Test (UCT) machine	50
3.10 4.1	Sample testing using Unconfined Compression Test (UCT) machine Graph of penetration versus moisture content	50 54
4.1	Graph of penetration versus moisture content	54
4.1 4.2	Graph of penetration versus moisture content Plasticity Chart (ASTM D2487)	54 55
4.14.24.3	Graph of penetration versus moisture content Plasticity Chart (ASTM D2487) AASHTO soil classification table (ASTM D3282)	54 55 57
4.14.24.34.4	Graph of penetration versus moisture content Plasticity Chart (ASTM D2487) AASHTO soil classification table (ASTM D3282) Particle size distribution of kaolin	54 55 57 58

4.8(a)	Deviator stress versus axial strain at failure for 4% area replacement ratio of CWC at different penetration ratio	63
4.8(b)	Deviator stress versus axial strain at failure for 6.75% area replacement ratio of CWC at different penetration ratio	64
4.9	Shear strength versus height of penetration ratio	67
4.10	Improvement shear strength versus height of penetration ratio	68
4.11	Graph correlation of shear strength versus height of penetration ratio	69
4.12	Graph correlation of improvement shear strength versus height of penetration ratio	70
4.13	Shear strength versus height over diameter of column	71
4.14	Improvement shear strength versus height over diameter of column	71
4.15	Graph correlation of shear strength versus height over diameter of column	73
4.16	Graph correlation of improvement shear strength versus height over diameter of column	73
4.17	Shear strength versus volume penetration ratio	74
4.18	Improvement shear strength versus volume penetration ratio	74
4.19	Graph correlation of shear strength versus volume penetration ratio	76
4.20	Graph correlation of improvement shear strength versus volume penetration ratio	76

LIST OF SYMBOLS

A_c	Area of a column
A _s	Area of a sample
H _c	Height of a column
Hs	Height of a sample
Vc	Volume of a column
Vs	Volume of a sample
Dc	Diameter of a column
Gs	Specific gravity
m_1	Mass of bottle water
m_2	Mass of bottle soil water
m_3	Mass of bottle dry soil
m_4	Mass of density bottle
Dr	Relative density
γ	Unit weight of current sample
$\gamma_{ m min}$	Minimum unit weight
γ_{max}	Maximum unit weight
τ	Shear strength of the soil
σ	Effective normal stress
φ	Cohesion
WL	Liquid limit
WP	Plastic limit
I_P	Plastic index

Wopt	Optimum moisture content
q_{u}	Deviator stress
Su	Undrained shear strength
Δs_{u}	Improvement of undrained shear strength
$ ho_d$	Dry density
R ²	Correlation cohesion

LIST OF ABBREVIATIONS

CWC	Ceramic Waste Column
USCS	Unified Soil Classification System
AASHTO	American Association of State Highway and Transportation Officials
ML	Low plasticity silt
UCT	Unconfined Compression Test
ASTM	American Society of Testing Material
BS	British Standard
UU	Unconsolidated Undrained Test