REFERENCES

Amitkumar, D. R., Indrajit, N. P. and Jayeshkumar, P. (2013). Re-Use Of Ceramic Industry Wastes For The Elaboration Of Eco-Efficient Concrete. International Journal of Advanced Engineering Research and Studies

Arvelo. (2004). Effects of The Soil Properties On the Maximum Dry Density Obtained From University of Central Florida.

- ASTM, (1999). Standard Proctor Test Designation D-698.
- Barnes, G. (2014). Atterberg Limit Test Soil Mechanics Basic Civil Engineering. Basic Civil Engineering. 239, 78 – 103.
- Barksdale, R. D. and R. c. Bachus, (1983). Design and Construction of Stone Columns, Report SCEGIT-83-10 submitted to the Federal Highl~ay Administration, School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia.
- Black, J., Sivakumar, V., Madhav, M. R., and McCabe, B. (2006). An Improved Experimental Set-Up to Study the Performance Of Granular Columns. *Geotechnical Testing Journal*. 293, 193 – 199.
- Black, J., Sivakumar, V., & McKinley, J. D. (2007). Performance of Clay Samples Reinforced with Vertical Granular Columns. *Canadian Geotechnics Journal*. 44, 89 - 95.
- Brand, E. W., and Brenner, R. P. (1981). *Soft Clay Engineering*. (1st ed.). Amsterdam: Elsevier Scientific Publishing Company.
- Boltakova N. V. *et al.* (2016). Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000–2015. Kazan Federal University, Russia.
- Churchman, G., Gates, W., Theng, B. and Yuan, G. (2006) Clays and Clay Minerals for Pollution In: Bergaya, F., Theng, B.K.G. and Lagaly, G., Eds., Handbook of Clay Science.Developments in Clay Science, Vol. 1. Chapter 11.1, 625-675.
- Craig, R. F. (1983). *Soil Mechanics*. (3rd ed.). Berkshire, England: Van Nostrand Reinhold (UK) Co. Ltd.

- Craig, R. F. (1983). *Soil Mechanics*. (7th ed.). London, England: Spon Press, Taylor & Francis Group.
- Gniel, J., and Bouazza, A. (2009). Improvement of Soft Soils Using Geogrid Encased Stone Columns. *Geotextiles and Geomembranes*. 27, 167 175. Elsevier.
- Conduto, D. 1999. Geotechnical Engineering: Principles and Practices. Prenctice Hall.
- Head, K. H. (1992). Manual of Soil Laboratory Testing. (2nd ed). London: John Wiley & Sons.
- Holtz, R. D., Jamiolkowski, M. B., Lancellotta, R., and Pedroni, R. (1991).
 Prefabricated Vertical Drains: Design and Performance. Oxford: Butterworth Heinemann.
- Huang, H. W. (1990). The Use of Bottom Ash in Highway Embankments, Subgrade, and Subbases. Joint Highway Research Project, Final Report, FHWA/IN/JHRP-90/4, Purdue Univ., W. Lafayette, Ind.
- Integrated Publishing (2014). Engineering Aid 1 Advanced Structural Engineering Guide Book Volume 1.
- Izquierdo, M., Querol, X., Josab, A., Vazquez, E., and López-Soler, A. (2008). Comparison Between Laboratory and Field Leachability of MSWI Bottom Ash as a Road Material. *Science of the Total Environment*. 389, 10 – 19. Elsevier.
- De Brito J., Pereira A.S, Correia J.R. (2005). Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem Concr Compos. 27(4),429–33.
- Jung, K.Y., Kitchen, N.R., Sudduth, K.A., Lee, K.S., Chung, S.O., (2010). Soil compactio varies by crop management system over a claypan soil landscape. Soil Till. Res. 107,1–10. Elsevier.
- Khan, Z. (2016). Consolidation Process of Deformation of Soils.
- Kim, B., Prezzi, M., and Salgado, R. (2005). Geotechnical Properties of Fly and Bottom AshMixtures for Use in Highway Embankments. *Journal of Geotechnical and Geoenvironmental Engineering*. 131 (7), 914 – 924. ASCE.
- Lee, F. W. (2008). Morphological, Mineralogical and Engineering Characteristics of Tanjung Bin Bottom Ash. Final Year Project Report, Universiti Teknologi Malaysia, Skudai.

- Maakaroun, T., Najjar S. S., and Sadek, S. (2009). Effect of Sand Columns on the Load Response of Soft Clays. *Proc. of Selected Papers of the 2009 International Foundation Congress and Equipment Expo.* 217 - 224. ASCE.
- Madhav, R. M. (2013). General Description of Permeability Test journal. *Geotechnical Testing Journal*. 168, 65 – 89.
- Mahmoud G. (2013). Bearing Capacity of Geosynthetic Encased Stone Column. Khaje Nasir Toosi University of Technology.
- Marto, A. (1996). *Volumetric Compression of a Silt Under Periodic Loading*. Doctor Philosophy. University of Bradford, U.K.
- Marto, A., Makhtar, A.M., Lee, F. W., Yap, S. L., and Muhardi (2009). Morphology, Mineralogy and Physical Characteristics of Tanjung Bin Coal Ash. 4th International Conference on Recent Advances in Materials, Minerals and Environment and 2nd Asian Symposium on Materials and Processing (RAMM & ASMP 2009). June 1 – 3, 2009. Penang, Malaysia.
- Muhardi, Marto, A., Kassim, K. A., Makhtar, A. M, Lee, F. W. and Yap. S. Y. (2010). Engineering Characteristics of Tanjung Bin Coal Ash. *Electronic Journal of Geotechnical Engineering*, 15 (K), 1117 – 1129.
- Murugesan, S., and Rajagopal, K. (2010). Studies on the Behavior of Single and Group of Geosynthetic Encased Stone Columns. *Journal of Geotechnical and Geoenvironmental Engineering*, 136, 129 139.
- Najjar, S. S., Sadek, S., and Makaroun, T. (2010). Effect of Sand Columns on the UndrainedLoad Response of Soft Clays. *Journal of Geotechnical and Geoenvironmental Engineering*, 136 (9), 1263 – 1277. ASCE.

Narasimha Rao, S., Prasad, Y. V. S. N., and Hanumanta Rao, V. (1992). *Use of Stone Columns in Soft Marine Clays*. Proc. 45th Canadian Geotechnical Conference, Canadian Geotechnical Society. September 1 - 7, 1992. Toronto, Canada.

- Raymond G.P (1997). Shearing Strength of Soil Volume 1. *Journal of Geotechnical Engineering 1997.*
- Reddy. K (2014). Illustrated Description of Constant Head Permeability Test. Engineering Properties of Soils Based on Laboratory Testing, UIC.128 (15).
- Rufaizal (2013). Engineering Properties of Batu Pahat Soft Clay Stabilized with Lime, Cement and Bentonite for Subgrade in Road Construction. Degree of Master. Universiti Tun Hussein Onn, Parit Raja, Malaysia.

- Senthamarai (2003). Concrete with Ceramic Waste Aggregate. University, Madras, Chennai 600 025, India.
- Schaefer, V.R., Ed. (1997). *Ground Improvement, Ground Reinforcement, Ground Treatment,* Geotechnical Special Publication No.69, American Society of civil Engineers, New York.
- Solidia Technologies (2015). Global Population growth and Urbanization. United States: Solidia Technologies.
- Stoeber, J.N., (2012). Effects of maximum particle size and sample scaling on the mechanical behavior of mine waste rock; a critical state approach. Master's Thesis. Colorado State University, Fort Collins, USA.
- Suryakanta P. (2013). Specific Gravity Test of Soil. Is2720 Part 3(1980).
- Tanaka H. (2012), Properties of Very Soft Clays: A Study of Thixotropic Hardening and Behaviour Under Low Consolidation Pressure. Hokkaido University, Japan.
- Tandel, Y. K., Solanki, C. H., and Desai, A. K. (2012). Numerical Modelling of Encapsulated Stone Column-Reinforced Ground. *International Journal of Civil*.
- Torkittikul and Chaipanich (2010). Utilization of Ceramic Waste as Fine Aggregate within Portland Cement and Fly Ash Concretes. Chiang Mai University, Thailand.