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ABSTRACT 

 

A walking bipedal robot by adding passive springs like mono and biarticular muscles 

which correspond to rectus femoris (RF), biceps femoris (BF), gastrocnemius (GAS) and 

tibialis anterior (TA) in human legs has been modeled in this paper. The stability of 

human-like leg walking can be achieved by adding these passive springs in the leg 

mechanism of bipedal robot. On the other hand, using these springs may inflict a fatigue 

during walking due to the additional work that can provide to the joints. The main 

objective of this paper is to analyze the total work of the robot during walking by 

proposing four cases of the preload of the springs at the equilibrium position. It’s found 

from this study that the case that has the most energy saving and ensure the comfortable 

walking to the robot is when the two muscles (GAS) and (TA) are not preloaded to support 

the total weight at the equilibrium position.  
 

Keywords: Walking bipedal robot; mono and biarticular muscles; total work; newton 

euler; zero moment point; energy saving; comfortable walking; walking fatigue.  
 

 

 

 

INTRODUCTION 

 

Human walking has been extensively studied in the field of biomechanics [1]. For 

example, in the fields of biomechanics and robotics, bipedal walking has been 

investigated for our further understanding of adaptive locomotion mechanisms of human 

and robots [2]. Obtaining human-like robotic walking has been a long standing, if not 

always explicitly stated goal of robotic locomotion. The quality of metal machining also 

important to ensure the quality of the parts [3]. Achieving human-like robotic walking 

goal promises to result in robots able to navigate the myriad of terrains that humans can 

handle with ease; this would have, for example, important applications to space 

exploration [4]. Moreover, going beyond purely robotic systems, if one can understand 

how to make robots walk-like humans, this understanding can be used to build robotic 

assistive and prosthetic devices to aid people with walking impairments and lower 

extremity amputations walk more efficiently and naturally [4-7] thus, the ability to obtain 

human-like robotic walking has important and far-reaching ramifications [4]. From the 
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biomimetic point of view, it is valuable to look at the walking behaviors of humans in 

order to achieve a comfortable robotic walking [8, 9].  

 

Research on biologically inspired robots is advancing nowadays. Many industrial robots, 

which are inspired by human leg muscles, are used for performing many tasks [2, 10-13]. 

Such muscles are categorized in two types: mono and biarticular muscles, which have the 

following properties [12, 14]: 

i. Monoarticular muscles: these muscles are connected to two links on each side of 

single joint. They can drive only one joint by producing torque around that joint. 

ii. Biarticular muscles: these muscles are connected to two links separated by a third 

link and two joints and can drive these two joints simultaneously, and have the 

capability to transfer energy mainly produced by monarticular muscles to joints 

where they can effectively contribute to the desired aim of movement.   

The mono and biarticular muscles that correspond to rectus femoris (RF), biceps femoris 

(BF) gastrocnemius (GAS) and tibialis anterior (TA) in human legs play significant roles 

in the stability of human walking [10, 11].The muscles (RF) is a bifunctional muscle 

responsible for hip flexion in the swing phase and knee extension in the late swing and 

stance phase, the (BF) muscle responds to the hip extension in the stance phase and the 

knee flexion in the swing phase the (GAS) muscle is primarily responsible for ankle 

plantarflexion but also takes a minor role in knee extension, the TA muscle has two 

distinct roles during human walking: (1) to dorsiflex the ankle during the swing phase for 

foot clearance and placement; (2) to contract during ankle plantarflexion at the initial foot 

contact with the ground [1,15]. Thus, using springs like mono-biarticular muscles in the 

leg mechanism of bipedal robots are able to achieve the stability of human-like leg 

walking compared with those that assume the bipedal robots like rigid body structures.  

On the other hand, using these springs may inflict a serious damage of the leg mechanism 

and causes the walking fatigue of the robot due the additional work that can provide to 

the joint legs during the walk period of bipedal robots [16]. In this sense, we need to check 

the total work of joints of each complaint leg during walking. In addition, the works 

analysis at joints are necessary to deal with the issue of comfortable walking for bipedal 

robotic applications [9]. However, it actually requires significant effort to evaluate the 

comfortability of walking which is closely related to obtaining good performance of 

legged robots [9, 16-19]. In biped robots, springs may be used to support the weight of 

the robot itself or its weight and a supplementary charge, or to manage energy 

(accumulating energy during landing phase and reinjecting it during a lifting phase). In 

this paper, the focus is on the weight support.  

The objective of this paper is to model the walking bipedal robot by adding springs like 

mono and biarticular passive muscles and to study the effect of those muscles on the total 

work of each leg during the walk. For this purpose, our paper is organized as follows: in 

section 2, we model the walking bipedal robot with springs like mono and biarticular 

muscles. In section 3: is devoted to the discussion of obtained simulation results to show 

the influence of the muscles on the total work of each leg, and the conclusion is drawn in 

the section 4. 
 

 

MODELING OF A BIPEDAL ROBOT WITH COMPLIANT LEG 
 

In order to have an effective analysis on the effect of mono and biarticular muscles on the 

total work of each leg of robot during walking, we consider the bipedal robot model with 

springs like mono and biarticular muscles as shown in Figure 1.  The bipedal model shown 
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in Figure 1 consists of four leg limbs (H1H2, HK, AK1 and BC) with upper body, three 

joints (hip, knee and ankle joints) and four linear springs, which are represented by the 

red dashed lines. The springs S1, S2, S4 correspond to the biarticular muscles: rectus 

femoris (RF), biceps femoris (BF) and gastrocnemius (GAS) in human legs respectively. 

Additionally, the spring S3 that correspond to a monoarticular muscle: tibialis anterior 

(TA) in human legs is also used in this model. The force generated in these springs 

 1 2 3 4, , ,f f f f f is calculated by the scalar product of the stiffness coefficient and the 

displacement (lengthening or compression) of spring, and in our case the intrinsic 

damping factor of springs is neglected. The point P=[H1,H2,K1,E,F,G,C,B] represent the 

spring attachment. The center of mass of the system is located at the hip joint (H). The 

limb mass is defined at the center of each limb. The two limbs (H1H2) and (BC) are 

considered in our model to remain parallel during the motion. The (H1H2) represents the 

upper body attached to the hip joint. The (BC) refers to the foot in contact with the 

horizontal ground or moving parallel to it. 

 

 
 

Figure 1.  Bipedal locomotion model with compliant legs. 

 

The dynamic simulations are realized with Matlab/Simulink by using Newton-Euler 

method [20] and the joint work is calculated by the integral of the scalar product of the 

joint torque and the joint angle [21]. Simulations have been performed separately for each 

leg, with a 2D model, to allow easy analysis of the results by decoupling the behaviour of 

each subsystem instead of analyzing only the global system. The motion simulated by 

using ZMP method [22-23] correspond to walking bipedal robot in straight line at a 

constant velocity of 2 m/s with the hip at a constant height of 0,49 m (no vertical 

acceleration). The support foot does not slip on the contact surface (coefficient of friction 

= 0.5) .For the simulation by using AMEsim and Matlab/Simulink, the dimensions and 

mass of segments of the robot are shown in [22]. 
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RESULTS AND DISCUSSION 

 

This section discusses the outcomes of the work and the results were drawn in Figure 

2.This Figure shows the simulation of walking bipedal robot by using AMEsim for a step 

(0.36 s). The short double support phase has been excluded. The right leg is the support 

leg during the motion, and the left leg is the free leg. The nominal inputs correspond to 

the offline trajectory computed with Matlab, while the realized outputs correspond to the 

results of a dynamical simulation performed with AMESim. In AMESim, PIDs are used 

to guarantee a minimum joint error and the nominal and realized-curves are almost 

coincident.  

Right Leg 

 

 

Left Leg 

 

 
 

Figure 2. Motion simulation of walking bipedal robot by using AMEsim. 

 

For simplicity and ease of comparison, the four springs use the same stiffness (𝑘1 = 𝑘2 =

𝑘3 = 𝑘4 = 𝑘 ), but four different values of 𝑘  have been used, as explained below. The 

equilibrium position of bipedal robot has been defined with the hip at the vertical of the 

ankle (same (𝑥) coordinate for the hip and ankle) [22-23]. 

In order to analyze the effect of springs on the work the motors have to supply, four cases 

have been simulated: 

Case (1): Arbitrary preload on the all muscles at the equilibrium position (FRF =-1000N, 

FBF =-291N,FGAS = -1156.5 N and FTA = -1000 N).   
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Case (2): the same thing like case (1), but in this case the preload of (TA) and (GAS) are 

used to support the total weight of the robot at the equilibrium position. (FRF =-1000N, 

FBF =-291N, FGAS = -2015 N and FTA = -1675 N). 

Case (3):  in this case: at the equilibrium position, the preload on the two muscles (RF) 

and (BF) are used to support the half of the rest of the body and the preload on the two 

muscles (GAS) and (TA) are used to support the total weight of the robot. (FRF =-265N, 

FBF  =-77N, FGAS = -1394N and FTA = -1159 N). 

Case (4):  in this case: at the equilibrium position, the preload on the two muscles (RF) 

and (BF) are used to support the entire of the rest of the body weight and the preload on 

the two muscles (GAS) and (TA) are used to support the total body weight (BW). (FRF =-

530N, FBF  =-154N, FGAS = -1618N and FTA = -1345 N). 

The preload is realized by pre-compression of the springs in the equilibrium position. This 

means that in the equilibrium position, with the nominal stiffness chosen, the system is in 

static equilibrium. The nominal stiffness has been arbitrary set to 5000 N/m. It has also 

been decided that the equilibrium would be realized by the leg support alone. This means 

that the total supported weight at the hip is the upper body’s weight and the weight of the 

free leg. The three other values of stiffness used in simulations are : 0 N/m, this 

corresponds to no springs at all, like the original bipedal robot ; 2500 N/m, this is half the 

nominal stiffness and this also corresponds approximately to the equilibrium with the two 

feet on the ground sharing the weight of the upper body ; 10 000 N/m, this is twice the 

nominal stiffness and it allows to analyse what happens if one thinks of a very rigid system 

allowing to bear a charge without using the motor drives. This three stiffness are used 

with the same pre-compression (same deformation of springs at the equilibrium position) 

as the one use with the nominal stiffness.  
We will now look at some results which are not shown in this paper. First, the spring forces during 

the motion (only the spring forces of case (1) and case (2) is shown in this paper). The spring 

forces depend only on the configuration (joint angles) of the system during the motion. For the 

support leg, (BF) and (RF) behave the same way for case (1) and (2) because the pre-constrained 

is the same for the two cases. The mass center of the upper body is directly placed at the hip joint, 

in such a way that the hip motor should not have to work to maintain the upper body (𝐻1𝐻2) 

parallel to the ground if the robot were accelerating. The (RF) and (BF) forces in the neutral 

position do not generate a net torque in (𝐻). They generate a reaction (torque) that is supposed to 

prevent the rotation of the body. The pre-constraints also have the effect of lifting the body (they 

push on the body (𝐻1𝐻2) and the pivot (𝐻) must pull down). All the curves cross the (𝑥) axis 

around 0.17 s (more precisely 0.1708 s), and this correspond to the passage at the equilibrium 

position. At the start of the motion (𝐻 behind 𝐴 for the support leg) and all muscles are almost 

always compressed. The behaviour for the free leg is similar, with higher limit (shape curves due 

to the fact that the foot rises about 78 mm above de ground, giving rise to higher elongation or 

compression of the springs. These results don’t give information on how these forces act to 

equilibrate or not the system (analysis is not as direct as with mono-articular muscles only), 

however it is clear that a higher spring stiffness gives rise to higher forces. 

The second point of focus is the joint driving torques required to produce the motion. The 

joint torque patterns of the right leg for the two cases show that the hip torque pattern is 

the same for the two cases and is proportional to the stiffness coefficient. Also without 

springs (𝑘 = 0 N/m) there should be no torque required. In case (1), spring stiffness has 

no effect on the knee joint torque. Initial oscillations have been appeared due to foot-

ground compliance. For case (2), the nominal preload (with 𝑘 = 5000 N/m) brings the 

knee torque around 0 N.m compared to an average around 70 N.m without springs. This 

is the weight support effect looked for. The ankle torque patterns for the two cases show 

that the magnitudes of the ankle torque for case (2) are higher than for case (1). Thus, we 

can conclude through the joint torque analysis that the preload of (GAS) and (TA) has 
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effects only on the behavior of the knee and ankle torques. This is also true for the free 

leg, although the patterns are quite different. 

Finally, we analyze the work done by each individual motor drive and the resulting total 

work. Figure 3 and Figure 4 show the total work (sum of the work of the three motors) 

for the support leg for case (1) and case (2). In case (1), the effect of springs is quite 

negligible with a little increase of the total work due mainly to the hip joint. In case (2), 

Figure4 shows a significant reduction of the total work with the nominal spring 

(remember that the system was balanced with  𝑘 = 5000 N/m). This reduction due to the 

value of the joint torque of the knee which is around 0N/m as shown above.  
 

 

 
 

Figure 3. The total works of the right leg case (1). 

 

 

 
 

Figure 4. The total works of the right leg case (2). 

 

The total work required by the support leg is reduced by 63.24%. However, taking 

into account the work required by the free leg (left leg, Figures 5 and 6 for cases (1) 

and (2)), one can see that in either cases, there is a significant increase of the total 
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work to move the free leg. Always by considering the nominal stiffness, this increase 

reaches a dramatic 202.27% for the free leg when (GAS) and (TA) are preloaded to 

support the entire robot system at the equilibrium position and combining the work 

of the two legs results in a net increase of 139.03%. If one considers the case where 

the equilibrium is realized with the two legs on the ground in case (2) (k=5000N/m), 

the total networks would be about 104.63%. The total net works for the two cases in 

the case where (k=10000N/m), show is not interesting to oversize springs, it provides 

no benefits. 

 

 
 

Figure 5. The total works of the left leg case (1). 

 

 

 
 

Figure 6. The total works of the left leg case (2). 

 

Another fact that can be drawn from this paper is that the use of the preload on the 

two springs (RF) and (BF) to support the rest of the body at the equilibrium position 

decreases the total net work of the robot by 3.42% compared with the use of the 

preload on the two springs (RF) and (BF) to support the half of the rest of the body 
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weight at the equilibrium position. This important result is clear from the Figures 7, 

8, 9 and 10. As known, the factor “energy saving” plays an important role in robotic 

field [24-26].  If we compare between the four cases from the point of view “energy 

saving”, it’s very clear that in the case (1) the energy provided by the robot to move 

the leg mechanism is less than the other cases with around 30% of energy reduction. 

This means that the use of case (1) guarantees a comfortable walking and a good 

performance to the robot in comparison with the other cases. In this paper we have 

only studied the total work in one-step of walking (T=0.36s) and the focus on energy 

saving because the total work increases gradually during the walk period of bipedal 

robot as shown in [16].  

 

 
Figure 7. The total works of the right leg case (3). 

 

 
 

Figure 8. The total works of the left leg case (3). 
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Figure 9. The total works of the right leg case (4). 

 

 
 

Figure 10. The total works of the left leg case (4). 
 

CONCLUSION AND PERSPECTIVE 

This paper addressed one of the scientific gaps of the dynamic walking locomotion via 

the dynamic analysis of the walking bipedal robot with mono and biarticular passive 

muscles. A comparison of the total work of the compliant legs found in this study with 

those of other studies was not possible, since these results have not been reported by other 

studies on the effect of mono and biarticular muscles on the joint works of bipedal robots. 

The novelty and perspective of this analysis can be drawn as follow:  

 Using mono and biarticular passive springs in the leg mechanism of bipedal robot 

has a direct effect on the comfortability of the robot during walking and the choice 

of a good configuration of these springs from the point of view “ energy saving” 

guarantees to the robot a comfortable walking. 

 The use of spring-like mono and biarticular muscles to self-support the weight of 

the robot may be interesting if the robot has to stand for long periods because 
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almost no energy would be spent by the motors but if the robot would have to 

walk more than 45% of the time, the use of springs is not recommended, based on 

the energy criterion. 

 Other configurations and walking pattern may also lead to different conclusions 

and one must be careful in extrapolating the results presented here. It could be 

interesting also if a mechanism could be used for the free leg to engage/disengage 

springs in a way to manage energy while the leg is not in support phase instead of 

creating resistance to motion. This opens the door to future works. 
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