"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of degree of Bachelor Degree of Chemical Engineering"

Signature

hazda

.

Name of Supervisor : Dr. Hayder A.Abdul Bari 30/4/2008

Date

STUDYING THE EFFECT OF USING SOME ADDITIVES ON CHANGING AZEOTROPIC BEHAVIOR IN DISTILLATION

NG WEI KUEN

A thesis submitted in fulfillment of the requirements for the award of the Degree of Bachelor of Chemical Engineering

Faculty of Chemical and Natural Resources Engineering University Malaysia Pahang (UMP)

MAY, 2008

I declare that this thesis entitled "Studying the effect of using some additives on changing azeotropic behaviour in distillation" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	· Mei ·
Name of Candidate	: NG WEI KUEN
Date	. 30/4/08

DEDICATION

Special dedication to my family members that always inspire, love and stand beside me, my supervisor, my beloved friends especially the one who always help me, my fellow colleagues, and all faculty members.

For all your love, care, support, and believe in me. Thank you so much.

ACKNOWLEDGEMENT

In preparing this thesis, I have used the experiences and knowledge of a large number of specialists. Therefore, it is appropriate and necessary to acknowledge their contributions.

First of all, I would like to express my appreciation especially to my loving caring father and mother respectively, Mr. Ng Geok Chen and Madam Lai Yong Thye and rest of family members who are very supportive morally to whatever good things that I have involve and done all these years.

Secondly, to my final year project supervisor Doctor Hayder A. Abdul Bari for his willingness in overseeing the progress of my research works from its initial phases till the completion of it. I do believe that all his guidance, encouragement, advices and comments are for the benefit of producing the best research work. I also would like to express my thanks to my co-supervisor Mr. Arman Bin Abdullah for the advices, motivation and helps in finishing my project. Also not to forget the lecturers especially at the Faculty of Chemical and Natural Resources Engineering who have been teaching me all this while.

Lastly, to my fellow friend Nurulhaida bin Luhid and also my others fellow undergraduate who are helpful especially ideas, valuable and opinion during the progress of the project. My sincere appreciations also extend to all my colleagues and others who have provided assistance at various occasions. Thank you.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLE	X
	LIST OF FIGURES	xii
	LIST OF APPENDIX	xiii
1	INTRODUCTION	
1.1	Separation process	1
1.2	Distillation	2
1.3	Azeotropic Distillation	2
2	LITERATURE REVIEW	
2.1	Separation Process	5
	2.1.1 Types of Separation Process	5
2.2	Introduction to Basic Distillation	9
	2.2.1 Historical Background	10
	2.2.2 Vapor/liquid Equilibrium (VLE) Curves	12
	2.2.3 Applications of distillation Operation	13
	2.2.3.1 Laboratory scale	14

vii

		2.2.3.2 Industrial Scale	16
2.3	Azeot	rope	18
	2.3.1	Types of azeotropes	19
	2.3.2	Phase Diagram	20
	2.3.3	Physical phenomena leading to Azeotrope	22
2.4	Hetero	bazeotropes	22
2.5	Separa	ation of Azeotrope Constituents	23
	2.5.1	Pressure Swing Distillation	23
	2.5.2	Distillation Using a Dissolved Salt	24
	2.5.3	Extratctive Distillation	24
	2.5.4	Chemical Action Distillation	25
	2.5.5	Azeotropic Distillation	25

viii

3 METHODOLOGY

3.1	Introd	uction	26
3.2	Exper	imental Rig	26
	3.2.1	Batch Distillation (Laboratory Scale)	27
	3.2.2	Ultraviolet-visible spectroscopy	28
3.3	Mater	ial Used	28
	3.3.1	Ethanol	29
	3.3.2	Cyclohexane	30
	3.3.3	Benzene	31
	3.3.4	Chloroform	32
	3.3.5	Acetonitrile	33
3.4	Experi	imental Work	34
	3.4.1	Samples preparation	34
	3.4.2	Expected procedure	34
3.5	Overa	ll Experiment Work of Batch Distillation	35
3.6	Block	Diagram	36

4

5

RESULT AND DISCUSSION

4.1	Introductions	38
4.2	Samples Testing	38
	4.2.1 First Section Samples Testing	38
	4.2.2 Second Section Samples Testing	40
	4.2.3 Third Section Samples Testing	41
	4.2.4 Fourth Section Samples Testing	42
CON	CLUSION AND RECOMMENDATIONS	
5.1	Conclusion	44
5.2	Recommendation	46

REFERENCES

ix

47

LIST OF FIGURES

-

HOLDE NO

FIGURE NO		PAGE
1.1	Minimum boiling point azeotrope	3
1.2	Maximum boiling point azeotrope	3
2.1	Laboratory distillation	10
2.2	Ideal vapor-liquid equilibrium	12
2.3	Non-ideal vapor liquid equilibrium with difficult separation process	13
2.4	Fractional distillation apparatus	15
2.5	Typical industrial distillation towers	16
2.6	Industrial distillation towers	17
2.7	Minimum boiling point azeotrope	20
2.8	Maximum boiling point azeotrope	21
3.1	Batch Distillation Column with Reflux Ratio	27
3.2	Ultraviolet-visible spectrophotometer	28
3.3	Chemical Formula and structure of Ethanol	29
3.4	Chemical formula and structure of Cyclohexane	30
3.5	Chemical formula and structure of Benzene	31
3.6	Chemical formula and structure of Chloroform	32
3.7	Chemical formula and structure of Acetonitrile	33

Х

4.1	Graph Concentration of Ethanol in different weight percentage of component(Cyclohexane)	39
4.2	Graph Concentration of Ethanol in different weight percentage of component(Benzene)	40
4.3	Graph Concentration of Ethanol in different weight percentage of component(Chloroform)	42
4.4	Graph Concentration of Ethanol in different weight percentage of component(Acetonitrile)	43

xi

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	General Properties of Ethanol	29
3.2	General Properties of Cyclohexane	30
3.3	General Properties of Benzene	31
3.4	General Properties of Chloroform	32
3.5	General Properties of Acetonitrile	33

xii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Gantt chart for Semester 1	50
В	Gantt chart for Semester 2	51
C	Concentration of ethanol in adding Cyclohexane as entrainer in different weight percentage of component	52
D	Concentration of ethanol in adding Benzene as entrainer in different weight percentage of component	53
E	Concentration of ethanol in adding Chloroform as entrainer in different weight percentage of component	54
F	Concentration of ethanol in adding Acetonitrile as entrainer in different weight percentage of component	55

xiii