Mathematical modeling of thin layer drying using open sun and shade of *Vernonia amygdalina* leaves

Oluwaseun Ruth Alara, * Nour Hamid Abdurahman, Siti Kholijah Abdul Mudalip, Olusegun Abayomi Olalere

Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia

Article info

Article history:
- Received 8 March 2017
- Accepted 14 August 2017
- Available online 5 June 2018

Keywords:
- Mathematical model
- Shade drying
- Sun drying
- *Vernonia amygdalina*

Abstract

The drying behavior of *Vernonia amygdalina* leaves was investigated using open sun and shade drying. The effective diffusivity coefficients for both methods were evaluated. Eight drying kinetics models were fitted to the experimental data obtained from the two drying methods; the goodness of fit was evaluated using three statistical tools, and the best model was selected. The Midilli and Kucuk model, which gave higher values of the coefficient of determination and lower values of the reduced chi-square and root mean square error was considered the best for predicting the drying behavior of open sun-dried and shade-dried *V. amygdalina* leaves with values of R^2 of 0.99951 and 0.99981, RMSE of 0.00243 and 0.00253 and reduced chi-square of 0.000511 and 0.000428, respectively. The values of the effective diffusivity coefficients for open sun and shade drying were 26.58×10^{-10} and 52.77×10^{-11} m2/s, respectively. Furthermore, open sun drying resulted in severe deformity of the leaf morphology which may lead to degradation of the phytochemicals. Thus, shade drying was the better way of drying *V. amygdalina* leaves to preserve the nutrients compared to open sun drying.

Introduction

Bitter leaf (*Vernonia amygdalina*) is one of the medicinal plants or herbs that grows in Africa and Asia. It is rich in vitamins, minerals, flavonoids (luteolin and luteolin 7-O-glucosides), sesquiterpene lactones (vernolide, vernolepin, vernodalin, vernodol and vernonide), terpenoids, and steroidal glycosides (Farombi and Owoeye, 2011; Jisaka et al., 1993; Mwanauta et al., 2014; Toyang and Verpoorte, 2013). These bioactive compounds result in the leaves having several pharmacological properties such as antioxidant, anti-diabetic, anti-inflammatory, and anti-cancer (Alara et al., 2017; Farombi and Owoeye, 2011; Ngatu et al., 2012). All the parts of this plant are rich in medicinal properties; the leaves have been used in treating diabetes, gonorrhea, malaria, stroke, inflammation, and cancer (Osinubi, 2008; Owu et al., 2008; Adetunji et al., 2013). The stems and roots have been used in the treatment of stomach aches and skin infections such as itching, ringworm, eczema, and rashes (Ijeh and Ejike, 2011; Oduah, 2012).

Fresh medicinal plants including bitter leaf may deteriorate a few days after harvesting; therefore, there is a need for preservation to extend their shelf-life (Ali et al., 2014; Gumus, 2015). Drying is one of the ancient preservative methods used in extending a herb’s shelf-life. In this method, moisture is removed from the grain, fruits or leaves, resulting in a reduction in their weight (Doymaz, 2006; Ali et al., 2014). Likewise, drying prevents the growth of yeast, bacteria and molds on the food. Most importantly, drying causes a reduction in shipping weight and in packaging requirements (Akpinar, 2006).

In recent years, different methods of drying have been studied to examine the effect of the drying rate and kinetics models on the plant matrix. Open sun and shade drying are well-known for reducing the moisture content in perishable products and thereby preventing deterioration (Togrul and Pehlivan, 2003; Akpinar, 2006). In spite of many disadvantages (such as probable contamination) of these methods, tropical and sub-tropical countries of the world still use open sun and shade drying to preserve agricultural products (Akpinar and Bicer, 2008). Solar energy which is the source of energy for open sun drying has...
been a preferred energy source because it is abundant, renewable, environmentally friendly, cheap, inexhaustible, and a non-pollutant (Akpinar and Bicer, 2008).

A series of studies have been conducted on the drying process and mathematical models developed for different leaves and fruits such as Moringa oleifera (Ali et al., 2014), curry leaves, mint, and bitter gourd (Vyankatrao, 2014), barbunya bean (Kayisoglu and Ertekin, 2011), orange seed (Rosa et al., 2015), spearmint leaves (Antal et al., 2011), banana (da Silva et al., 2014), and mango, guava and aonla (Kumar and Sagar, 2014). Although the drying process and mathematical kinetics of V. amygdalina leaves using open sun drying have been studied (Sobukola et al., 2007) whereby the Midilli and Kucuk model was reported best in describing the behavior, however, to the best of the authors’ knowledge, there has been no study reported on the drying behavior of V. amygdalina leaves by comparing the open sun and shade drying methods. Therefore, this study was conducted to provide a comprehensive investigation on the drying behavior and model development of V. amygdalina leaves under open sun and shade drying.

Materials and methods

Materials

Fresh leaves of V. amygdalina were harvested from a garden in Gambang, Malaysia (3° 42’25.183”N; 103°6’8.982”E). The matured leaves were selected to ensure a homogenized sample.

Drying experiment

The open sun drying process was carried out in December 2016 at the Faculty of Chemical and Natural Resources Engineering laboratory, Universiti Malaysia Pahang, Malaysia. Fresh leaves of V. amygdalina were separated from the stalks manually and rinsed with clean tap water. Thereafter, the elliptical-shaped leaves were cut into smaller pieces of approximately 1 cm in length and the gross weight of the sample (50 ± 1 g) was determined using a laboratory scale (513-1S; Secura; New York, NY, USA) with readability to 0.001 g. Afterwards, the average initial moisture content of the 50 g samples was recorded following AOAC (1990). Before exposing the samples to open sun, the ambient air temperature, average relative humidity and average wind speed were recorded. The samples were spread uniformly on a single layer sample tray and then exposed immediately to the open sun. The experiment started about 09:00 h and continued until 19:00 h. The loss in moisture content from the samples was determined using the weight changes at 1 h intervals throughout the drying process. The samples were dried until their moisture content was less than 0.11 g water/g sample. The dried samples were stored in air-tight LDPE bags and sealed thermally to prevent moisture absorption. The experimental procedures were repeated thrice and the results were expressed as mean values.

For shade drying, the fresh leaves of V. amygdalina were rinsed with clean tap water. The elliptical-shaped leaves were cut into small pieces of approximately 1 cm in length. Then, the gross weight of the sample (50 ± 1 g) was determined using a laboratory scale (513-1S; Secura; New York, NY, USA) with readability to 0.001 g. The average initial moisture content of the 50 g samples was recorded following AOAC (1990). The samples were spread uniformly on a single layer sample tray and were placed on a well-ventilated laboratory bench. Before drying, the average air room characteristics of 26 ± 1 °C and 33 ± 5% relative humidity were recorded. The loss in moisture content was recorded at 1 h intervals until less than 0.11 g water/g sample was attained. The dried samples were stored in air-tight LDPE bags and sealed thermally to prevent moisture absorption. The experimental procedures were repeated thrice and the results were expressed as mean values.

Mathematical modeling

The moisture ratio (MR) of V. amygdalina leaves was determined using Equation (1):

\[
MR = \frac{M_t}{M_0}
\]

(1)

where \(M_t\) and \(M_0\) are the moisture content at a particular time \(t\) and the initial moisture content of the sample, respectively. Equation (1) was used due to continuous fluctuations in the relative humidity of the drying air during the open sun and shade drying processes (Toğrul and Pehlivan, 2003).

Table 1 shows the eight models used in selecting the best drying kinetics for describing the drying curve equation of V. amygdalina leaves using open sun and shade drying. The Statistical computer program (STATISTICA 12.0; Dell Technologies; United States) was used to perform the regression analysis. The correlation coefficient \(R\) for Equation (2), the root mean square error (RMSE) from Equation (3), and \(\chi^2\) from Equation (4) as the mean square of the deviations between the experimental and calculated values of the models were used to determine the quality of the fit.

\[
R = 1 - \frac{\sum_{i=1}^{N} (MR_{pre,i} - MR_{exp,i})^2}{\sum_{i} (MR_{exp,i} - MR_{exp mean})^2}
\]

(2)

\[
\text{RMSE} = \sqrt{\frac{\sum_{i} (MR_{exp,i} - MR_{exp mean})^2}{N}}
\]

(3)

\[
\chi^2 = \sum_{i} \frac{(MR_{exp,i} - MR_{exp mean})^2}{MR_{exp mean}}
\]

(4)

Table 1: Theoretical and semi-theoretical models for thin-layer drying.

<table>
<thead>
<tr>
<th>Number</th>
<th>Model name</th>
<th>Model equation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approximation of diffusion</td>
<td>(MR = a \exp(-kt) + (1 - a) \exp(-kbt))</td>
<td>Sobukola et al. (2007)</td>
</tr>
<tr>
<td>2</td>
<td>Henderson and Pabis</td>
<td>(MR = a \exp(-kt))</td>
<td>Henderson and Pabis (1961)</td>
</tr>
<tr>
<td>3</td>
<td>Logarithmic</td>
<td>(MR = a \exp(-kt) + c)</td>
<td>Toğrul and Pehlivan (2003)</td>
</tr>
<tr>
<td>4</td>
<td>Midilli and Kucuk</td>
<td>(MR = a \exp(-kt^\alpha) + bt)</td>
<td>Midilli et al. (2002)</td>
</tr>
<tr>
<td>5</td>
<td>Newton</td>
<td>(MR = \exp(-kt))</td>
<td>Sobukola et al. (2007)</td>
</tr>
<tr>
<td>6</td>
<td>Page</td>
<td>(MR = \exp(-kt^\alpha))</td>
<td>Page (1949)</td>
</tr>
<tr>
<td>7</td>
<td>Two-term</td>
<td>(MR = a \exp(-kt) + b \exp(-kt))</td>
<td>Henderson (1974)</td>
</tr>
<tr>
<td>8</td>
<td>Two-term exponential</td>
<td>(MR = a \exp(-kt) + (1 - a) \exp(-kbt))</td>
<td>Sharaf-Eldeen et al. (1980)</td>
</tr>
</tbody>
</table>

where \(a, b, c, \alpha, k, k_0\) — coefficient; \(k, k_0\) — drying constant.
RMSE = \left[\frac{1}{N} \sum_{i=1}^{N} (MR_{\text{pre},i} - MR_{\text{exp},i})^2 \right]^{\frac{1}{2}}

(3)

\chi^2 = \frac{\sum_{i=1}^{N} (MR_{\text{exp},i} - MR_{\text{pre},i})^2}{N - n}

(4)

where \(MR_{\text{exp},i}\) is the experimental moisture ratio, \(MR_{\text{pre},i}\) is the predicted moisture ratio, \(N\) is the number of observations and \(n\) is the number of constants in the drying model (Toğrul and Pehliván, 2003; da Silva et al., 2014; Rosa et al., 2015).

Sample morphological and elemental characterization

The sample appearance before and after drying was examined using scanning electron microscopy (SEM; TM3030Plus; Hitachi; Ibaraki, Japan). The sample was mounted on an SEM stub and the morphology appearance was observed. This analysis was carried out under a high vacuum condition at an accelerated voltage of 15 keV, 100 × magnification and an analytical working distance of 1 mm. The elemental analysis of the sample before and after drying was analyzed using energy-dispersive X-ray spectroscopy. The detection of the elements in the V. amygdalina leaves was carried out using a silicon (lithium) detector cooled with liquid nitrogen. The EDX Shimadzu software package (Shimadzu EDX-7000/8000; Hitachi; Japan) was used to determine the intensity of each element in counts per second from the sample X-ray spectrum deconvolution.

Results and discussion

The average values recorded for changes in ambient temperatures during the open sun drying of V. amygdalina leaves are shown in Fig. 1. These ranged from 26.53 to 30.07 ± 0.14 °C with the highest ambient temperature (30.07 ± 0.15 °C) recorded at 1400 h. The average relative humidity and average wind speed were recorded as 75% and 2.28 m/s, respectively.

Drying characteristics

Drying curves showing the behavior of V. amygdalina leaves under both open sun and shade drying are presented in Fig. 2. The decrease in moisture content over time for both drying methods indicates no constant rate in the drying of V. amygdalina leaves. This was similar to the reported results from other herbs and food materials, showing a rapid moisture removal from the leaves in the initial stage that later decreased with the drying time (Ali et al., 2014; Vyankatrao, 2014; Rosa et al., 2015). Thus, the time required to dry V. amygdalina leaves under open sun and shade drying conditions from the initial moisture content of 2.0842 ± 0.1 g water/g dry sample on a dry basis (d.b.) to the final moisture content of 0.011 ± 0.001 g water/g dry sample d.b. and 0.011 ± 0.001 g water/g dry sample d.b. was 13 h and 58 h, respectively. In Fig. 2, it can be clearly seen that the time required to dry the sample was lower (13 h) under open sun. The results obtained using both methods showed that internal mass transfer occurred by diffusion (Akpinar, 2006). This finding is in agreement with results obtained from drying mint leaves, long green
pepper, carrot, aloe vera, garlic, black tea, and king of bitters (Madamba et al., 1996; Simal et al., 2000; Panchariya et al., 2002; Doymaz, 2004, 2006; Akpinar and Bicer, 2008).

Fitting of the thin layer drying curves

In order to evaluate the moisture content as a function of drying time, the eight models (Table 1) were fitted to the experimental data (Fig. 3) by converting the moisture content data at the different drying times to moisture ratio expressions. The obtained statistical results from these eight models for both drying methods are presented in Table 2. Accordingly, all the tested models had high coefficient of determination (R^2) values in the range 0.95004–0.99951 and 0.95325–0.99981 for open sun and shade drying, respectively. These showed that all the models can actually describe the open sun and shade drying of *V. amygdalina* leaves but the Midilli and Kucuk model had the highest R^2 value and the lowest χ^2 and RMSE values for the open sun and shade drying of *V. amygdalina* leaves, as shown in Table 2. From the Midilli and Kucuk model, the open sun drying of *V. amygdalina* leaves resulted into $R = 0.99951$, RMSE = 0.00243 and $\chi^2 = 0.00051$ while that of shade drying of *V. amygdalina* leaves resulted in $R = 0.99981$, RMSE = 0.00253 and $\chi^2 = 0.000428$. In similar research, the Midilli and Kucuk model was used to predict the drying behavior of *V. amygdalina* under open sun conditions (Sobukola et al., 2007). Therefore, this model may be used in the prediction of both open sun and shade drying behavior of *V. amygdalina* leaves.

Validation of the model

The validation of the predicted model was carried out by comparing the predicted with experimental moisture ratio values. The linear correlation between the predicted moisture ratio generated and the experimental moisture ratio (Fig. 4) showed that the Midilli and Kucuk model could best describe the drying behavior of *V. amygdalina* leaves under open sun and shade drying conditions. Likewise, the higher values of R from the correlations for open sun (0.9931) and shade drying (0.9934) indicated the best fit of the model and showed that the predicted model provided good agreement between the experimental and predicted results. Therefore, the Midilli and Kucuk model can be used to predict the thin layer open sun or shade drying behavior of *V. amygdalina* leaves.

Effective diffusivity coefficients determination

The drying behavior of leafy plants can best be described using Fick’s second diffusion model (Doymaz, 2006; Sobukola et al., 2007; Akpinar and Bicer, 2008). Equation (5) gives the analytical solution of Fick’s second diffusion law in a slab geometry by assuming

Table 2

<table>
<thead>
<tr>
<th>Drying method</th>
<th>Model number</th>
<th>Coefficients</th>
<th>R</th>
<th>RMSE</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open sun</td>
<td>1</td>
<td>a = 0.256437; b = 0.376544; k = 0.000163</td>
<td>0.95252</td>
<td>0.04834</td>
<td>0.010002</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>a = 1.000012; k = 0.000163</td>
<td>0.97850</td>
<td>0.03763</td>
<td>0.007644</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>a = 0.654320; k = 0.100003; c = 0.254673</td>
<td>0.96074</td>
<td>0.03067</td>
<td>0.008617</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>a = 0.122883; b = 0.000436; k = 1.134270; n = 0.000234</td>
<td>0.99951</td>
<td>0.00243</td>
<td>0.000511</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>k = 0.000178</td>
<td>0.99892</td>
<td>0.04832</td>
<td>0.009210</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>k = 0.011322; n = 0.012126</td>
<td>0.99684</td>
<td>0.00262</td>
<td>0.00601</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>a = 0.220021; k = 0.002228; b = 1.000023; k = 1.033651</td>
<td>0.98981</td>
<td>0.03762</td>
<td>0.007231</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>a = 1.000025; k = 0.000512</td>
<td>0.95004</td>
<td>0.04302</td>
<td>0.010045</td>
</tr>
<tr>
<td>Shade</td>
<td>1</td>
<td>a = 0.222654; b = 0.315534; k = 0.000132</td>
<td>0.99644</td>
<td>0.01362</td>
<td>0.000758</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>a = 1.000038; k = 0.000155</td>
<td>0.99992</td>
<td>0.01054</td>
<td>0.002153</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>a = 0.633254; b = 0.100000; c = 0.249983</td>
<td>0.96031</td>
<td>0.00984</td>
<td>0.008215</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>a = 0.119947; b = 0.000356; k = 1.112201; n = 0.000212</td>
<td>0.99981</td>
<td>0.00253</td>
<td>0.000428</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>k = 0.000146</td>
<td>0.94090</td>
<td>0.01902</td>
<td>0.005320</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>k = 0.001022; n = 0.010132</td>
<td>0.99592</td>
<td>0.00339</td>
<td>0.000622</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>a = 0.211062; k = 0.000116; b = 1.000019; k = 1.010456</td>
<td>0.95858</td>
<td>0.01612</td>
<td>0.002643</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>a = 0.000000; k = 0.0000432</td>
<td>0.95325</td>
<td>0.01672</td>
<td>0.003103</td>
</tr>
</tbody>
</table>

Fig. 4. (A) Experimental and predicted Midilli and Kucuk model moisture ratio values for open sun drying and (B) shade drying.
uniform initial moisture distribution, negligible shrinkage, simplification of the moisture movement by diffusion and the temperature and constant diffusion coefficients (Crank, 1975).

\[
MR = \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n + 1)^2} \exp \left[-\frac{(2n + 1)^2 \pi^2 D_{eff} t}{4L^2} \right]
\]

(5)

where \(D_{eff}\) is the effective diffusivity (square meters per second), \(L\) is the half thickness of slab (m) of drying from both sides, and \(n\) is the number of terms taken into consideration.

For long drying periods, equation (5) can be simplified to the first term (\(n = 1\)) of the series only (Akpinar, 2006; Doymaz, 2006). The diffusion coefficients for each mode of drying can be calculated from the slope obtained by plotting the natural logarithm of MR against drying time.

During the open sun and shade drying, the effective diffusivity coefficients were \(26.58 \times 10^{-10}\) m\(^2\)/s and \(52.77 \times 10^{-11}\) m\(^2\)/s, respectively. These values fall within the general range of \(1 \times 10^{-9}\) m\(^2\)/s to \(1 \times 10^{-11}\) m\(^2\)/s for food samples and agricultural crops (Toğrul and Pehlivan, 2003; Rosa et al., 2015). Related results have been reported for \(V.\ amygdalina\) leaves and mint leaves under open sun drying (Doymaz, 2006; Sobukola et al., 2007), carrot under convective air drying (Doymaz, 2004), black tea (Panchariya et al., 2002), garlic (Madamba et al., 1996), and aloe vera (Simal et al., 2000). However, variation in the values of the effective diffusivities may be due to the drying conditions, implying that the open sun drying has a higher \(D_{eff}\) value than shade drying.

Morphological changes and elemental analysis of the \(V.\ amygdalina\) leaves

The morphological appearance of \(V.\ amygdalina\) leaves before and after drying is presented in Fig. 5A\(_1\)-A\(_3\). Glandular and non-glandular trichomes are present on the epidermal surface of the fresh leaf (Fig. 5A\(_1\)). It can be clearly seen that the drying conditions affected the epidermal surfaces and caused the shrinkage of glandular trichomes. These may be attributed to the increased drying temperature. More shrinkage was seen in the sun-dried sample compared with the shade drying as higher temperature caused a more violent evaporation of moisture as well as melting of starch granules (Fig. 5A\(_2\)-A\(_3\)). Furthermore, this phenomenon suggests that drying affects the physical structure of the cell wall which might lead to breakage of vegetal tissue. Likewise, it has been...

Table 3 Nutrient composition (%) in \(V.\ amygdalina\) leaf before and after drying.

<table>
<thead>
<tr>
<th>Element</th>
<th>Fresh leaf</th>
<th>Open sun-dried</th>
<th>Shade-dried</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>47.176</td>
<td>57.537</td>
<td>53.123</td>
</tr>
<tr>
<td>O</td>
<td>51.257</td>
<td>37.608</td>
<td>39.382</td>
</tr>
<tr>
<td>Si</td>
<td>0.080</td>
<td>0.345</td>
<td>1.500</td>
</tr>
<tr>
<td>K</td>
<td>0.673</td>
<td>2.806</td>
<td>3.289</td>
</tr>
<tr>
<td>Ca</td>
<td>0.391</td>
<td>0.598</td>
<td>0.680</td>
</tr>
<tr>
<td>Br</td>
<td>0.423</td>
<td>0.118</td>
<td>0.459</td>
</tr>
<tr>
<td>Mg</td>
<td>0.423</td>
<td>0.118</td>
<td>0.152</td>
</tr>
<tr>
<td>Al</td>
<td>0.391</td>
<td>0.759</td>
<td>0.240</td>
</tr>
<tr>
<td>P</td>
<td>0.849</td>
<td>0.649</td>
<td>0.663</td>
</tr>
<tr>
<td>Cl</td>
<td>0.620</td>
<td>0.059</td>
<td>0.041</td>
</tr>
</tbody>
</table>
| O.R. Alara et al. / Agriculture and Natural Resources 52 (2018) 53–58
reported that higher drying temperature tends to reduce the yields and phytochemicals present in plants (Antal et al., 2011). In the current study, less shrinkage was recorded in the shade-dried sample. Therefore, it is imperative to select an appropriate drying method to preserve the sample’s phytochemical nutrients.

The mineral contents in *V. amygdalina* leaves before and after drying are shown in Fig. 5B–B and Table 3. Carbon, oxygen, silicon, phosphorus, potassium, calcium, and bromine were present in the fresh leaf (Fig. 3). There was a larger percentage of oxygen followed by silicon and phosphorus concentrations. Thus, shade drying would be preferable as it causes less damage to the leaf. Furthermore, chlorine acts as an electrical charge when dissolving body fluids and regulates the body pH (Ragavendran et al., 2012). Therefore, *V. amygdalina* leaves can be used for pharmacological and therapeutic agents.

In this study, the drying behavior of *V. amygdalina* leaves was studied under open sun and shade drying conditions. The drying curves did not show a constant rate of drying under the experimental conditions though a falling rate with time was observed. Eight thin-layer-drying kinetics models were used to explain the drying behavior and three statistical tools were used to quantify the goodness of fit. The Midilli and Kucuk model, which gave higher values of coefficient of determination and lower values of reduced chi-square and RMSE was considered the best for predicting the drying behavior of open sun and shade dried *V. amygdalina* leaves with values of R^2 of 0.99951 and 0.99981, RMSE of 0.00243 and 0.00253, and χ^2 of 0.000511 and 0.000428, respectively. The values of effective diffusivity coefficients for open sun and shade drying were 26.58×10^{-7} m2/s and 52.77×10^{-7} m2/s, respectively. In addition, the open sun drying caused more severe damage on the morphological appearance of the leaf which resulted in the reduction of its mineral contents. Thus, shade drying would be preferable in preserving the phytoneutrients of the *V. amygdalina* leaves.

Conflict of interest

The authors report no conflicts of interest.

Acknowledgment

The authors acknowledge the financial support from UMP soft grant (RDU180329).

References

Page, G.E., 1949. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. M.S. Thesis, Department of Mechanical Engineering, Purdue University, Purdue, Indiana, USA.

