VIRTUAL DESIGN OF MULTI-AXIS POSITIONING FOR ROBOTIC APPLICATION

WAN MUHD ZULHASIFI BIN W. AB. RAHIM

Report submitted in partial fulfillment of the requirements for award of the degree of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

> > JUNE 2008

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature

gfeletur-

Name of Supervisor: Dr. Daw Thet MonPosition: LecturerDate: 6 November 2008

:

Signature

Name of Panel Position Date

: MR. SEMIN : Lecturer : 6 November 2008

ii

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

W" hundle hest.

Signature

Name: WAN MULTO ZULHASIFI W. AB. RAHIM ID Number: MAOGIOY Date: 6 NOVEMBER 2008 iii

For my beloved parent, sisters and brother, thanks a lot for your tolerance, love and encouragement...

> For my dearest friends and course-mates, thanks a lot for supporting me for this time...

"Life is meaningless without you all ... "

ACKNOWLEDGEMENTS

v

I would like to express my gratitude to my supervisor, Dr. Daw Thet Thet Mon for her patience in guiding and encouraging me throughout the project. This project could have never developed to the extent it has without her continued support and interest. My sincere appreciation extends to all engineers and technicians who have provided assistance all the time too.

Special thanks are also dedicated to Mr. Mohd Fazli Bin Ismail, Instructor Engineer, who had spent a lot of time in giving me a helping hand for obtaining the right procedures in using ALGOR software. Not forgotten, all staff in Laboratory of Faculty of Mechanical for providing me a lot of assistance at various occasions.

I would like to take this opportunity to express my sincere appreciation to all especially my parents, family and friends for their tolerance, love and encouragement throughout all these years who had giving me the support all the time. Last but not least, my appreciation also go to those who are involved directly and indirectly in helping me to complete this project.~ a big thank you to all of you!

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv

CHAPTER 1 INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Scope	4
1.5	Organization of the thesis	4

CHAPTER 2 LITERATURE REVIEW

viii

2.1	Concept of Multi-Axis Positioning	5
2.2	Current Robot Design	7
2.3	Finite Element Analysis	8
2.4	Previous Journal which related to the project	8

CHAPTER 3 METHODOLOGY

3.1	Project Methodology	12
3.2	Design in Solidworks	14
3.3 3.4	Finite Element Method Finite Element Model 2.4.1 Proliminary Modeling and Simulation	16 18
	3.4.1 Preniminary Modeling and Simulation 3.4.2 Modeling and Simulation of Multi-axis Positioning	18

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Preliminary Results	23
4.2	Finite Element Model of Multi-axis	26
4.3	Simulated Results of Complete Model	29

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

APP	ENDICES	40
REFERENCES		44
		14
5.3	Recommendation	43
5.2	Contribution of this Project	43
5.1	Conclusion	42

LIST OF TABLES

Table No.		Page
3.1	Simulated parameters	21
4.1	Effect of time-step on computational time	29
4.2	Comparison with reference robot specification	31

Х

LIST OF FIGURES

Figure No.		Page
2.1	(a,b) Degree of freedom in spring-mass system	6
2.2	Translational and rotational degrees of freedom	6
2.3	A Fanuc robot model M-6iB	7
3.1	Methodology flow chart	13
3.2	Reference robot (model Fanuc M-6iB) with six axis	15
3.3	Specification of motion speed in reference robot manipulators	15
3.4	(a,b)Model geometry to analyze rotation and swing	19
3.5	Virtual model in Solidworks	20
3.6	Model swing in Solidworks	17
3.7	Virtual model in Solidworks	18
4.1	Finite element model for analysis of rotation(a)	23
4.1	Finite element model for analysis of swing(b)	24
4.2	Computed rotation	24
4.3	Nodal rotational magnitude for swing motion	25
4.4	Virtual robot geometry with five axis	26

xi

4.5	Number of Finite element	27
4.6	Boundary condition	28
4.7	The deformed plot demonstrates the positioning of robot manipulators	32
4.8	Computed positioning of J1 axis for 0.18s analysis time	33
4.9	Computed positioning of J2 axis for 0.18s analysis time	34
4.10	Computed positioning of J3 axis for 0.18s analysis time	35
4.11	Computed positioning of J4 axis for 0.18s analysis time	36
4.12	Computed positioning of J5 axis for 0.18s analysis time	37
4.13	Computed effective stress for base and small arm	38
4.14	Computed torque for the manipulators	39

xii

LIST OF SYMBOLS

L	Langrangian term
Т	Total kinetic energy
ρ	Mass density
$\dot{u}, \dot{v}, \dot{w}$	Velocity component
u, v, w	Displacement component
Р	Total number of DOFs
a	Nodal velocity

LIST OF ABBREVIATIONS

- DOF Degree-of-freedom
- FE Finite element
- LCD Light Crystal Display
- CAD Computer Aided Design
- MES Mechanical Event Simulation
- FEM Finite Element Method