SOFTWARE DEVELOPMENT BY INTEGRATING THE INTEGRATED EFFORT FLOW ANALYSIS AND BOOTHROYD – DFA

AHMAD ARIF SYAZNI BIN ABD RAHMAN

A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

OCTOBER 2008

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing.

Signature	:
Name of Supervisor	: Dr. Kumaran A/L Kadirgama
Date	: 14 November 2008

Signature	:
Name of Panel	: Mr. Mohd Fadzil Faisae Ab Rashid
Date	: 14 November 2008

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name: AHMAD ARIF SYAZNI BIN ABD RAHMANID Number: ME 05047Date: 14 November 2008

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABREVIATIONS	XV
LIST OF APPENDIX	xvi

CHAPTER 1 INTRODUCTION

1.1	Project Background	1
1.2	Problem statement	5
1.3	Research Objective	5
1.4	Research Scopes	6
1.5	Significant Study	6
1.6	Expected Output	6
1.7	Summary	7

CHAPTER 2 LITERATURE REVIEW

2.1	Effor	t Flow Analysis	8
	2.1.1	The non-relative motion link 'N-Link (O ¹)	10

	2.1.2	The component relative motion link 'C-Link' (O^2)	10
	2.1.3	The relative motion link 'R-Link' (O ^N , Nth order)	11
	2.1.4	The interface relative motion link 'I-Link'	11
	2.1.5	Solid mechanics criteria for successful component	11
		combination	
	2.1.6	Relative motion guideline	13
2.2	Pugh's M	lethod	15
2.3	Designs f	For Assembly (DFA)	17
	2.3.1	Boothroyd – Dewhurst DFA	17
	2.3.2	Boothroyd –Dewhurst DFA Methodology	18
	2.3.3	Principles of Boothroyd – Dewhurst DFA	19
	2.3.4	DFA Guidelines	20
	2.3.5	Advantages and Disadvantages of	21
		Boothroyd – Dewhurst DFA	
2.4	Summary		21

CHAPTER 3 METHODOLOGY

3.1	Introduction	22
3.2	Revolutionary goal of the product	23
3.3	Activity Diagram of the product	23
3.4	Interfaces, Components and Flows of product	24
3.5	Effort flow diagram of product	24
3.6	Design Guidelines	25
3.7	Generate alternative and evaluate the best alternatives	26
3.8	Comparison of product using DFA Boothroyd and Dewhurst	27
3.9	Summary	29

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	30
4.2	Effort Flow Analysis – DFA software	31
4.3	Effort Flow Analysis – DFA software with case study (can opener)	41

4.4	Proposed Design	47
4.5	Design for Assembly (DFA) Analysis	48
4.6	DFA comparison	50
4.7	Advantages of this software	53
4.8	Disadvantages of this software	53
4.9	Differential between this software and other software	54
5.0	Summary	54

CHAPTER 5 CONCLUSION & FUTURE WORKS

5.1	Conclusion	55
5.2	Recommendations	56

REFERRENCES 57

APPENDIX

Appendix A	58
Appendix B	60
Appendix C	64

LIST OF FIGURES

Figure No.

Page

2.1	Hypothetical example illustrating Pugh's method. (Stoll, 1999)	15
3.1	Pugh concept selection methods	26
3.2	Methodology Flow Chart	28
4.1	Front page Effort Flow Analysis software	31
4.2	Selection link form of Effort Flow Analysis software	32
4.3	Form Pugh method	33
4.4	Main form DFA analysis	34
4.5	Selection form of handling analysis	35
4.6	Selection form of insertion analysis	35
4.7	One hand analysis forms	36
4.8	One hand with grasping aids analysis form	36
4.9	Two hands for manipulation analysis form	37
4.10	Two hands or assistance required for large size analysis form	37
4.11	Part added but not secured analysis form	38
4.12	Part secured immediately analysis form	38
4.13	Separated operation analysis form	39
4.14	Report form	40
4.15	Can openers Effort Flow Activity Diagram	41
4.16	Component part of can opener	42
4.17	Effort Flow Analysis for can opener	43

4.18	Pugh Method for can opener	43
4.19	Effort Flow Analysis diagram of can opener	44
4.20	Guideline application sequence A	45
4.21	Guideline application sequence B	45
4.22	Exploded view of parts reduction can opener	47
4.23	DFA analyses form for current design	48
4.24	DFA analyses form for proposed design	48
4.25	Explode view pen	51
4.26	Explode view nail clipper	52

LIST OF TABLES

Table No.		Page
2.1	Link type and relative motion (Greer and Wood, 2004)	9
2.2	The advantages and disadvantages of Boothroyd-Dewhurst DFA	21
3.1	Effort Flow Analysis design guidelines (Greer and Wood, 2004)	25
4.1	Comparison of original can opener and proposed design	49

LIST OF SYMBOLS

N - Link	Relation motion at the interfaces only
C - Link	Relation motion between the non-interfacial regions of components
R-Link	Relative motion at the interfaces and between other regions
I-Link	Relative motion at the interfaces only
O^1	N-Link
O^2	C-Link
O^N	R-Link

LIST OF ABBREVIATIONS

DFA	Design for Assembly
DOF	Degree of freedom
EFA	Effort Flow Analysis

LIST OF APPENDICES

APPENDIX NO	TITLE	PAGE
A1	FYP 1 Gantt chart	58
A2	FYP 2 Gantt chart	59
В	DFA analysis of can opener	60
С	Coding EFA - DFA software	64