

FAILURE ANALYSIS OF INPUT SHAFT

MOHAMAD RIDHWAN BIN RUSLAN

A report submitted in partial fulfilment of the requirements

for the award of the degree of

Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

NOV 2008

PERPUSTAKAAN UNIVERSITI MALAYSIA PAHANG	
No. Perolehan 038662	No. Panggilan TJ 1057
2 2 JUL 2009	1253 2008 13 BC. C12

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature

Name of Supervisor: Muhamad Mat Noor (M.M.Noor)

Position: Head of Department (Automotive Engineering)

Date:

Signature

Name of Panel:

Position:

Date:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature Name: Mohamad Ridhwan Ruslan

ID Number: MA05092

Date:

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor Mr. Muhamad Mat Noor for his germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. He has always impressed me with his outstanding professional conduct, his strong conviction for science, and his belief that a Bachelor program is only a start of a life-long learning experience. I appreciate his consistent support from the first day I applied to graduate program to these concluding moments. I am truly grateful for his progressive vision about my training in science, his tolerance of my naïve mistakes, and his commitment to my future career. I also would like to express very special thanks to my co-supervisor Dr. Kumaran A/L Kadirgama for his suggestions and co-operation throughout the study. I also sincerely thanks for the time spent proofreading and correcting my many mistakes.

I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. Special thanks should be given to my committee members. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this study.

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	i
STUDENT'S DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF SYMBOLS	xiii

CHAPTER 1 INTRODUCTION

1.1	Project motivation	1
1.3	Problem background	3
1.3	Problem statement	4
1.4	Objective of study	5
1.5	Scope of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction 6		6
2.2	Gear and gearing		6
	2.2.1	Gear torque and ratio	8
2.3	Failure	e analysis	8
2.4	Shaft 1		10
2.5	Mechanical fatigue		
2.6	5 Failure analysis journal		15
	2.6.1	Effect of carburizing on notch fatigue behavior in AISI 316	
		austenitic stainless steel	15
	2.6.2	Failures of rear axle shaft of 575 DI tractors	
	2.6.3	Crack initiation mechanism of extruded az31 magnesium	18
		alloy in the very high cycle fatigue regime	

2.6.4	Fatigue behavior of graphite and interpenetrating graphite-	20
	aluminium composite up to 109 load cycles	
2.6.5 2.7 Carbon stee	to extruded	22 26
CHAPTER 3	METHODOLOGY	
3.1 Introductio	n	29
3.2 Method		
3.2.	1 Cutting processes (lathe machine)	31
3.2.	2 Fatigue test	33
3.2.	3 Stress analysis by finite element analysis	35
CHAPTER 4	RESULT AND DISCUSSION	

4.1 Introduction	
4.2 Fatigue test	
4.2.1 Specimen preparation	38
4.2.2 Fatigue testing	40
4.2.3 Fatigue calculations	47
4.3 Stress analysis	
4.3.1 Drawing input shaft	48
4.3.2 Stress analysis	
4.3.2.1 Stress apply at gearing system 1	49
4.3.2.2 Stress apply at gearing system 2	53
4.4 Stress von mises	
4.4.1 Torque calculations	56
4.4.2 Stress von mises analysis	57

CHAPTER 5 CONCLUSIONS & RECOMMENDATION

5.1 Co	5.1 Conclusion	
5.2 Recommendation		61
REFE	REFERENCES	
APPE	NDICES	
А	Material test certificate	64
В	side and front view of rapture specimen after fatigue test	67
С	3D model of input shaft by SOLIDWorks	68

LIST OF TABLES

Table No		Page
2.4	Modification comparative statements	18
2.5	The mechanics and fatigue properties of shaft material	23
2.6	Cyclic fatigue load under condition no.1 (MPE)	24
2.7	Cyclic fatigue load under condition no.2 (LDPE)	25
4.1	The chemical composition of AISI 1045 steel used in this study	39
4.2	The chemical composition of AISI 4140 steel used in this study	39
4.3	Result experiment of carbon steel AISI 1045	41
4.4	Result experiment of carbon steel AISI 4140	42
4.5	Result when apply force at gearing system 1	50
4.6	Result when apply force at gearing system 2	53

LIST OF FIGURES

Figure	Figures No	
2.1	One of the fractured parts of the input shaft	11
2.2:	A diagram showing location of the three steps in a fatigue fracture under axial stress	13
2.3	A diagram showing the surface of a fatigue fracture.	14
2.4	An example of beachmarks or "clamshell pattern" associated with stress cycles that vary in magnitude and time as in factory machinery.	14
2.5	An example of the striations found in fatigue fracture.	15
2.6	S–N diagram for carburized notched specimens characterized in terms of maximum stress.	16
2.7	Relationship between fatigues limits and stress concentration factor.	16
2.8	S–N curve for AZ31 alloy after ultrasonic fatigue testing	19
2.9	Fatigue data of FU2590 measured in fully reversed bending tests at 25 Hz	21
2.10	3D CAD model of the gear shaft	22
2.11	S–N curve of gear shaft material.	23

2.12	FEM model of gear shaft.	24
2.13	Nodal stress field of gear shaft	25
3.1	Flow chart of project	30
3.2	Standard size of fatigue specimen	32
3.3	Conventional lathe machine	32
3.4	Fatigue test machine	33
3.5:	Fatigue Tester labels	35
4.1	Standard fatigue specimen was machined	41
4.2	S-N curves for carbon steel AISI 1045	43
4.3	S-N curves for carbon steel AISI 4140	44
4.4	S-N curves for carbon steel AISI 4140 and AISI 1045	46
4.5	Drawing input shaft from SolidWorks	48
4.6	Displacement occur when variable load applied	50
4.7	Stress von Mises in different load applied	51
4.8	Displacement when 1000 N load applied	52

4.9	Stress von Mises when 1000 N load applied	52
4.10	Displacement occur when variable load applied	54
4.11	Stress von Mises in different load applied in system	54
4.12	Displacement when 1000 N load applied	55
4.13	Stress von Mises when 1000 N load applied	55
4.14	Input shaft which is already applied load	57
4.15	The result of analysis input shaft	58

LIST OF SYMBOL

FEA	Finite Element Analysis
AISI	American Iron and Steel Institute
Kt	Stress concentration factor
S_f	Fatigue strength
ε	Fatigue ductility
Е	Young's modulus
Ν	Number of cycles to failure
ω	Angular velocity
σ_{YM}	Von Mises stress