A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs

Gomaa A. M. Ali^{a,b}, Elżbieta Megiel^c, Jan Romański^c, H.Algarni^{de}, Kwok FengChong^a
^aFaculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, 26300
Kuantan, Malaysia

^bChemistry Department, Faculty of Science, Al–Azhar University, Assiut 71524, Egypt ^cUniversity of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland ^dResearch Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia

^eDepartment of Physics, Faculty of Sciences, King Khalid University, P. O. Box 9004, Abha, Saudi Arabia

.

ABSTRACT

In this paper, we report a simple and effective method to functionalize industrial-grade multiwalled carbon nanotubes (MWCNTs) with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), via oxidation of MWCNTs and followed by carbodiimide coupling of amino-TEMPO. The effective coupling is confirmed and studied by EPR, HRTEM, BET, XPS, FTIR, TGA and XRD techniques. Electrochemical studies reveal the capacitive enhancement of MWCNTs-TEMPO, where MWCNTs-TEMPO shows capacitance value ($66 \, F \, g^{-1} \, at \, 0.25 \, A \, g^{-1}$) that is 5-times higher than that of industrial grade MWCNTs ($13.5 \, F \, g^{-1} \, at \, 0.25 \, A \, g^{-1}$). This can be due to the reversible redox reaction of nitroxide radicals on TEMPO that contributes to pseudocapacitance. A symmetrical supercapacitor is assembled with MWCNTs-TEMPO as electrode material and optimized with wide operating voltage ($2 \, V$) to produce high energy density of $26.6 \, Wh \, kg^{-1}$ with high stability (90% capacitance retention over $4000 \, cycles$). The findings propose a facile approach to modify industrial grade MWCNTs as the electrode materials in supercapacitors.

Keywords: MWCNTs; Functionalization; Nitroxides; TEMPO; Supercapacitance