THE PROPERTIES OF CONCRETE CONTAINING REJECTED FOAMED CONCRETE AS PARTIAL SAND REPLACEMENT

AHMAD LUTFI FAJRI BIN ZAIDAN

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering.

(Supervisor's Signature)

Full Name: DR. KHAIRUNISA MUTHUSAMYPosition: ASSOC. PROF.Date: 19th June 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature)
Full Name : AHMAD LUTFI FAJRI BIN ZAIDAN
ID Number : AA13144
Date : 19th June 2017

THE PROPERTIES OF CONCRETE CONTAINING REJECTED FOAMED CONCRETE AS PARTIAL SAND REPLACEMENT

AHMAD LUTFI FAJRI BIN ZAIDAN

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

ACKNOWLEDGEMENTS

Praise be to Allah, the Lord of Universe

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, I am grateful to the God for the good health and wellbeing that were necessary to complete this project.

I would like to express my deep and sincere gratitude to my research supervisor, Assoc. Prof. Dr. Khairunisa Binti Muthusamy, for giving me the opportunity to do research and providing invaluable guidance throughout this research. Her dynamism, vision, sincerity and motivation have deeply inspired me. Without her continued support and interest, this project report would not have been the same as presented here.

Last but not least, I want to express my deepest gratitude to my friend Ahmad Faizul Ali and Advien Ami for their constant support and concern throughout this project. I take this opportunity to express special gratitude to all staff of Concrete and Structure Laboratory for giving their time and energy in completing this project.

Finally, I thank all those who have helped me directly or indirectly in the successful completion of my thesis. Anyone missed in this acknowledgement are also thanked. If I did not mention someone's name here, it does not mean that I do not acknowledge your support and help. Again, I would like to thank everyone who supported and helped me during my study.

TABLE OF CONTENT

DEC	CLARATION			
TIT	LE PAGE			
ACK	KNOWLEDGEMENTS	ii		
ABSTRAK				
ABS	STRACT	iv		
TAB	BLE OF CONTENT	v		
LIST	T OF TABLES	viii		
LIST	LIST OF FIGURES			
LIST	LIST OF ABBREVIATIONS xi			
CHA	APTER 1 INTRODUCTION	1		
1.1	Introduction	1		
1.2	Problem statement	3		
1.3	Objective	3		
1.4	Significance of research	4		
1.5	Scope of research	4		
1.6	Layout of thesis	5		
CHA	APTER 2 LITERATURE REVIEW	6		
2.1	Introduction	6		
2.2	Concrete	7		
2.3	Properties of concrete	8		
2.4	Application of concrete	9		

2.5	Reject	ted foamed concrete as waste and impact on environment	10
2.6	Sand	mining in worldwide	10
2.7	Sand	mining in malaysia	12
2.8	Effect	of sand mining	13
CHAI	PTER 3	3 METHODOLOGY	15
3.1	Introd	uction	15
3.2	Material preparation		16
3.3	Mixin	g ingredient	17
	3.3.1	Cement	17
	3.3.2	Water	18
	3.3.3	Rejected foamed concrete	19
	3.3.4	Fine aggregate	20
	3.3.5	Coarse aggregate	21
3.4	MIX I	PROPORTION	22
3.5	LABORATORY TESTING		24
	3.5.1	Slump test	24
	3.5.2	Compressive strength test	25
	3.5.3	Flexural strength test	27
CHAI	PTER 4	RESULTS AND DISCUSSION	29
4.1	Introd	uction	29
4.2	Slump	o test	29
4.3	Comp	ressive strength test	31
4.4	Flexu	ral strength test	36

CHAPTER	5	CONCLUSION
----------------	---	------------

41

5.1	Introduction		41
5.2	Conclusion		41
	5.2.1	Effect of foamed concrete as partial sand replacement on workability of normal concrete	41
	5.2.2	Effect of foamed concrete as partial sand replacement on compressive strength of normal concrete	42
	5.2.3	Effect of foamed concrete as partial sand replacement on flexural strength of normal concrete	42
5.3	Recon	nmendations	42
REFERENCES			44

LIST OF TABLES

Table 3.1	Mix design of concrete	23
Table 3.2	Apparatus use for slump test	25
Table 4.1	Slump Test Result (mm)	30
Table 4.2	Compressive Strength with days	31
Table 4.3	Flexural Strength with days	37

LIST OF FIGURES

Figure 2.1	Percentage of different type of solid waste generated (t/day) in 1994	7
Figure 2.2	Cube and Cylinder Concrete	7
Figure 2.3	Concrete Composition	8
Figure 2.4	Application of concrete in IBS	9
Figure 2.5	Mineral mined in 1990	11
Figure 2.6	Diagram of sand-and-gravel stream bed	13
Figure 3.1	Research methodology flow	15
Figure 3.2	Specimen preparation flow	16
Figure 3.3	Type of cement used	18
Figure 3.4	Rejected foamed concrete	19
Figure 3.5	Jaw crusher	19
Figure 3.6	Sieving rejected foamed concrete	20
Figure 3.7	Fine aggregate at concrete and structure laboratory	21
Figure 3.8	Course aggregate	22
Figure 3.9	Types of slump	24
Figure 3.10	Compressive strength testing machine (ADR 2000)	26
Figure 3.11	Flexural strength test machine	28
Figure 4.1	Effect of rejected foamed concrete content on the slump	30
Figure 4.2	Compressive strength of concrete containing different percentages of rejected foamed concrete	32
Figure 4.3	Compressive strength of concrete with 0% of rejected foamed concrete	33
Figure 4.4	Compressive strength of concrete with 10% of rejected foamed concrete	33
Figure 4.5	Compressive strength of concrete with 20% of rejected foamed concrete	34
Figure 4.6	Compressive strength of concrete with 30% of rejected foamed concrete	34
Figure 4.7	Compressive strength of concrete with 40% of rejected foamed concrete	35
Figure 4.8	Compressive strength of concrete with 50% of rejected foamed concrete	35
Figure 4.9	Flexural strength of concrete containing different percentages of rejected foamed concrete	36
Figure 4.10	Flexural strength of concrete with 0% of rejected foamed concrete	38

- Figure 4.11 Flexural strength of concrete with 10% of rejected foamed concrete 38
- Figure 4.12 Flexural strength of concrete with 20% of rejected foamed concrete 39
- Figure 4.13 Flexural strength of concrete with 30% of rejected foamed concrete 39
- Figure 4.14 Flexural strength of concrete with 40% of rejected foamed concrete 40
- Figure 4.15 Flexural strength of concrete with 50% of rejected foamed concrete 40

LIST OF ABBREVIATIONS

BS	British Standard
DID	Drainage and Irrigation Department
IBS	Industrialised Building Systems
MSW	Municipal Solid Waste
PCC	Portland Composite Cement
UNISEL	University Industry Selangor