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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 77 (2018) 397–400

2212-8271 © 2018 The Authors.  Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance Cutting 
(HPC 2018).
10.1016/j.procir.2018.08.300

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance 
Cutting (HPC 2018).

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2018) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

2212-8271 © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the International Scientific Committee of the 8th CIRP Conference on High Performance Cutting (HPC 2018).. 

8th CIRP Conference on High Performance Cutting (HPC 2018) 

Sustainable Optimization of Dry Turning of Stainless Steel based on 
Energy Consumption and Machining Cost 

 Salem Abdullah Bagabera,b and Ahmad Razlan Yusoffa*  
aFaculty of Manufacturing Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia 

                b Seiyun Community College, Seiyun, Hadhramout, Yemen  

* Corresponding author. Tel.: +609-424-5873; fax: +609-424-5888. E-mail address: razlan@ump.edu.my 

Abstract 

Reducing energy consumption and machining cost under dry conditions should be considered for sustainable machining. The selection of 
cutting parameters is an important task for dry turning steel and has a significant influence on energy consumption and operation cost. In this 
work, the influence of cutting parameters, namely, cutting speed, feed rate, and depth of cut, on energy, cost, and tool wear are first analyzed. A 
multi-response parameter is then optimized to minimize energy and machining cost, and this parameter is solved using the NSGA II algorithm. 
Finally, a confirmation validation test is conducted to validate the proposed model. This method also effectively reduces environmental effects 
by using noncutting fluid and requiring less energy than other methods, and this reduction results in sustainable machining. 
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1. Introduction 

Operation cost is an important factor that is used as an 
optimization response. The basic concept in any production 
process is to produce an acceptable component with the 
minimum possible cost [1]. Several measures, such as 
optimizing the cutting parameters, cooling system, energy 
consumption and tool life to minimize the production cost and 
maximize the production rate, are undertaken to achieve this 
objective. Several works regarding machining have been 
performed to reduce cost. More et al. [2] used Gilbert’s 
approach to analyze the cost on the basis of the total 
machining cost between the cBN coated with PCBN in turning 
a AISI 4340 steel, similar to Sahoo [3]. Other research [4] 
used a polynomial network and multi-cutting production cost 
problems [5], developed cutting time and production cost 
models [6], and applied the simulated annealing approach to 
solve the optimization cost problem [7]. Various equations, 
namely, [2]–[4], [8] can express the machining cost of the 

manufacturing operation. Nonetheless, other machining 
elements, such as energy and cutting fluid costs, are not 
considered in these equations. The cutting tool factor is 
effective in cutting performance in terms of production rate, 
cost, and surface quality. This factor comprises 2%–4% of the 
total machining cost [9]. Results in [2] showed that the total 
machining cost per part using CBN–TiN-coated inserts is 
12%–30% lower than that of PCBN-tipped tools. Lubrication 
fluids are also considered an additional product cost and 
negatively affect the environment [10], human health [11], and 
energy consumption [12]; the additional cutting cost is 7%–
17% of the total cost. Environment cutting should be practiced 
whenever possible by performing dry cutting strategies, which 
are advantageous in terms of environmental impact and 
economic studies. Most previous cost models use Gilbert’s 
approach. Hence, the completed cost objective for the turning 
process presented in this work considers the cost of energy 
consumption, edge cutting tool, and overall cost.  
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1. Introduction 

Operation cost is an important factor that is used as an 
optimization response. The basic concept in any production 
process is to produce an acceptable component with the 
minimum possible cost [1]. Several measures, such as 
optimizing the cutting parameters, cooling system, energy 
consumption and tool life to minimize the production cost and 
maximize the production rate, are undertaken to achieve this 
objective. Several works regarding machining have been 
performed to reduce cost. More et al. [2] used Gilbert’s 
approach to analyze the cost on the basis of the total 
machining cost between the cBN coated with PCBN in turning 
a AISI 4340 steel, similar to Sahoo [3]. Other research [4] 
used a polynomial network and multi-cutting production cost 
problems [5], developed cutting time and production cost 
models [6], and applied the simulated annealing approach to 
solve the optimization cost problem [7]. Various equations, 
namely, [2]–[4], [8] can express the machining cost of the 

manufacturing operation. Nonetheless, other machining 
elements, such as energy and cutting fluid costs, are not 
considered in these equations. The cutting tool factor is 
effective in cutting performance in terms of production rate, 
cost, and surface quality. This factor comprises 2%–4% of the 
total machining cost [9]. Results in [2] showed that the total 
machining cost per part using CBN–TiN-coated inserts is 
12%–30% lower than that of PCBN-tipped tools. Lubrication 
fluids are also considered an additional product cost and 
negatively affect the environment [10], human health [11], and 
energy consumption [12]; the additional cutting cost is 7%–
17% of the total cost. Environment cutting should be practiced 
whenever possible by performing dry cutting strategies, which 
are advantageous in terms of environmental impact and 
economic studies. Most previous cost models use Gilbert’s 
approach. Hence, the completed cost objective for the turning 
process presented in this work considers the cost of energy 
consumption, edge cutting tool, and overall cost.  
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Saving energy and reducing CO2 emissions are currently 
the most important issues for manufacturers. Energy 
conservation machining systems can be divided into those that 
relate to new cutting technologies and those that consider the 
relationship between input cutting process parameters. 
Machining parameter condition and optimum value selection 
play important roles in decreasing energy consumption [13]. 
Hence, the second type of energy-saving improvement is the 
preferred choice for existing machines. However, only a few 
studies have considered energy saving in process optimization 
[14]. Rajemi et al. [15] developed an energy model by 
obtaining optimum machining conditions. A summary of these 
efforts for energy saving revealed that studies commonly 
applied experimental optimization methods to select the 
optimum cutting condition.  

Analysis of the effect and appropriate selection of process 
parameters helps decrease power consumption [16], increase 
production rate [4], reduce cost and tool wear, and ensure 
quality. Multi-objective optimization simultaneously 
optimizes a collection of objective functions (i.e., surface 
roughness, energy, tool wear, and machining cost). Various 
multi-optimization techniques, such as response surface 
methodology, Taguchi method, and other statistical methods, 
have been studied [17], [18]. With the increasing use of 
evolutionary methods, new techniques for multi-response 
optimization are advanced to improve the single-optimization 
genetic algorithm to multi-objective genetic algorithm. NSGA 
II is one of the most remarkable evolutionary algorithms that 
is widely applied for multi-objective optimization.  

Nevertheless, the proposed method is limited to a particular 
response. The multi-objective method and the mathematical 
optimum model of the machining process about cutting 
parameters are rarely studied. The energy of some elements is 
not considered. Consequently, a mathematical model for 
energy objective, including all machining tools and their 
functions correlated with the variable optimisation method, 
must be developed. Many studies have reported the 
performance of cutting processes on the basis of traditional 
objective optimization, and a few studies have investigated 
energy saving [14] and machining cost. Considering all 
machining tools and using different cutting tools under dry 
condition, no combined model of energy and cost objectives 
for the turning process has been presented yet. Therefore, the 
multi-optimization proposed in this research is necessary to 
consider the trade-off for a balance between process efficiency 
and environmental issues. In the present study, the NSGA II is 
used to determine the Pareto solutions of the optimum 
parameters of multi-optimization models. 

2. Experimental details 
2.1. Experimental setup 

Turning operations are considered to study the effect of 
cutting parameters on tool wear, energy consumption, and 
cost. A stainless steel cylindrical workpiece with 20 mm 
cutting length is turned. The workpiece is machined on a 
turning CNC 420 with a rotating speed range of 100–4,000 
r/min. The CBN cutting tool used for this study is designated 
as ISO CNMG 120408, with a sharp 80° diamond tip and 0° 

relief angle. Figure 1 presents the experimental setup, 
equipment, workplace, and data flow. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.2. Methodology  
The experimental details of using the design expert to 

determine and analyze the cutting parameter range are 
presented. The multi-optimization proposed in this present 
study is based on a mathematical model for energy and cost 
objectives and correlated with the variables cutting speed, 
depth of cut, and feed rate during the turning of AISI 316 
under dry conditions. Afterward, the optimum range results 
obtained by NSGA II and results are experimentally evaluated 
and verified. 

The machining parameters and the corresponding tool 
wear, cost, and energy values obtained in this study are shown 
in Table 1. 

Table 1. Machining parameters and obtained responses  

Run  v fr ap 
Tool 
wear 
(mm) 

Energy 
consumption 

(kWh) 

Machining 
cost 

(RM) 
1 140 0.15 1.1 0.115 0.771 18.30 

2 140 0.06 1.1 0.0959 1.631 35.14 

3 90 0.15 1.1 0.0952 1.089 22.27 

4 110 0.2 1.4 0.0926 0.813 16.95 

5 170 0.1 0.8 0.1148 0.838 21.26 

6 110 0.1 1.4 0.105 1.360 27.61 

7 190 0.15 1.1 0.1437 0.621 17.86 

8 140 0.15 1.6 0.131 0.884 19.24 

9 170 0.2 0.8 0.0996 0.485 14.96 

10 170 0.2 1.4 0.157 0.620 16.63 

11 140 0.23 1.1 0.0926 0.572 14.78 

12 140 0.15 1.1 0.1096 0.771 18.30 

13 140 0.15 1.1 0.1296 0.771 18.30 

14 140 0.15 1.1 0.103 0.771 18.30 

15 110 0.1 0.8 0.1074 1.224 26.64 

16 140 0.15 1.1 0.116 0.771 18.30 

17 140 0.15 0.6 0.106 0.658 16.99 

18 110 0.2 0.8 0.0833 0.677 15.86 

19 170 0.1 1.4 0.123 0.974 22.73 

20 140 0.15 1.1 0.1296 0.771 18.30 

 
2.3. Energy and cost models 

The total energy consumed during dry turning machining 
can be calculated on the basis of Equation 1. 
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃0𝑡𝑡0  + 𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠  +  𝑃𝑃𝑎𝑎𝑎𝑎𝑑𝑑𝑡𝑡𝑎𝑎𝑎𝑎𝑑𝑑  +  𝑃𝑃𝑎𝑎𝑎𝑎𝑑𝑑

𝜋𝜋.𝐷𝐷.𝑙𝑙
𝑣𝑣.𝑓𝑓   +

𝑘𝑘  𝜋𝜋.𝐷𝐷.𝑙𝑙.𝑎𝑎𝑝𝑝
60   𝑃𝑃𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠 (𝜋𝜋. 𝐷𝐷. 𝑙𝑙. 𝑣𝑣(𝛼𝛼−1). 𝑓𝑓(𝛽𝛽−1)𝑎𝑎𝑝𝑝

𝛾𝛾. 𝑐𝑐−𝛼𝛼)                                         (1) 
where Edry is the direct total energy requirement for dry 
cutting; P0, Pst, and Pair (watts) are the power requirements of 

 
Figure 1. Experimental setup 
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the machine during start-up, setup state, and rotating spindle 
without cut state, respectively; D is the average diameter of 
the workpiece (mm); l is the length of cut (mm); t0, tst, tair, tt, 
and tc (s) are the start-up, setup, rotating spindles without cut 
state, tool change time, and cutting time, respectively; and k is 
the specific energy requirement in cutting operations (kJ/cm3). 

Equation 2 presents the machining cost of the dry turning 
process. 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑒𝑒𝑃𝑃0𝑡𝑡0 + 𝑥𝑥𝑒𝑒𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 + 𝑥𝑥𝑒𝑒𝑃𝑃𝑡𝑡𝑎𝑎𝑑𝑑𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑 +  𝑥𝑥𝑒𝑒𝑃𝑃𝑡𝑡𝑎𝑎𝑑𝑑

𝜋𝜋.𝐷𝐷.𝑡𝑡
𝑣𝑣.𝑓𝑓 +

𝑥𝑥𝑒𝑒𝑘𝑘 (𝜋𝜋.𝐷𝐷.𝑡𝑡𝑝𝑝.𝑡𝑡
60 ) + 𝑥𝑥𝑒𝑒𝑃𝑃𝑠𝑠𝑡𝑡. 𝑡𝑡𝑡𝑡  (𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣(𝛼𝛼−1)𝑓𝑓(𝛽𝛽−1)𝑎𝑎𝑝𝑝

(𝛾𝛾). 𝑐𝑐−𝛼𝛼) + 𝑥𝑥 (𝑡𝑡0 +  𝑡𝑡𝑠𝑠𝑡𝑡 +
 𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑 +  𝑡𝑡𝑡𝑡 + 𝜋𝜋.𝐷𝐷.𝑡𝑡

𝑣𝑣.𝑓𝑓 ) + (𝑥𝑥 𝑡𝑡𝑡𝑡 +
𝑦𝑦)(𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣(𝛼𝛼−1)𝑓𝑓(𝛽𝛽−1)𝑎𝑎𝑝𝑝

(𝛾𝛾)𝑐𝑐−𝛼𝛼)                                                      (2)  
where x, denotes the estimated total cost of labor charge, 
machine charge, and overhead; xe is the energy cost rate; c is 
the coefficient related to the cutting conditions; 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are 
positive constant parameters depending on tool material and 
workpieces. 

Certain data, parameters, and coefficients must be 
determined in advance to implement the multi-optimization of 
energy and cost model. Start-up energy, start-up, setup state, 
and rotating spindle without cut state should be obtained as 
energy data. The cost of cutting tool, machining cost, and 
energy consumed cost should also be determined. According 
to a mechanical engineering manual and Kalpakjian and 
Schmid[9], the coefficients in the optimization model, 
including α, β, γ, c, n, x, y, and k, are determined, and on the 
basis of the current machining practice, the total charge (x) of 
the labor charge, machine charge, and overhead is estimated 
as RM 25 per hour. The cost of power (xe) is 6.91 cent/kWh, 
and the single-tip uncoated carbide tool (CNMG 120408) 
costs RM 28.5 per piece. Therefore, the mean value of a 
single uncoated cutting edge (y) is RM 14.25. According to 
these data, the optimization model for the multi-objective 
problem for dry condition can be established as follows: 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑑𝑑 = 23.2 ∗ 10−4 + 15.25 ∗ 10−3𝑎𝑎𝑝𝑝 + 253𝑣𝑣−1𝑓𝑓−1 + 800 ∗
                        10−3𝑎𝑎𝑝𝑝𝑣𝑣−1𝑓𝑓−1 + 12 ∗ 10−3𝑎𝑎𝑝𝑝

0.3𝑣𝑣𝑓𝑓0.2                              
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑑𝑑 = 0.03364 +  12.036 × ( 1

𝑣𝑣.𝑓𝑓) +  0.226 ∗ 𝑎𝑎𝑝𝑝 +  9.49 ∗
10−6𝑎𝑎𝑝𝑝

0.3𝑣𝑣𝑓𝑓0.2                                                                                                     (4)         
which is subject to the following: 
0.6 < a < 1.6; 
90 < v < 190; 
0.06 < f < 0.23. 
 
3. Results and discussion  
3.1. Evaluation of tool wear  

 The flank wear results are provided in Figure 2. A 
maximum flank wear of 0.3 mm is used as the tool life [17]. 
The main effects are presented by a continuous line, whereas 
the parallel line presents the prediction results. The results 
show that the speed and depth of cut are the most significant 
parameters, whereas feed has no influence. The cutting 
conditions are cutting speed of 110 m/min, feed rate of 0.2 
mm/rev, and depth of 0.6 mm.  
3.2. Evaluation of energy and cost 

Figure 3 shows the plot for energy consumption. The feed 
rate and cutting speed show a negatively significant effect, 
whereas the depth shows a positively significant effect. This 
plot indicates that the feed rate factor is more significant than 
the other parameters. This result shows that the energy value 

significantly decreases from 1.18 kWh to 0.7 kWh when the 
feed changes from low to high level. Similar results were 
reported in [14,15]. 

Figure 4 presents the influence of cutting parameters on 
machining cost. Among the input parameters, feed rate and 
cutting speed exhibit the most significant factor relationships 
sequentially. Moreover, the depth of cut exerts no influence 
on machining cost. 

3.3. Multi-objective optimization-based NSGA II algorithm 
 The Pareto optimal front is obtained by the multi-objective 

optimization-based NSGA II algorithm (MO-NSGA II). 
MATLAB R2013 is used to plot the Pareto optimal front and 
simulate the multi-optimization model. Notably, this front lies 
in the middle of the curve for problems where all two 
objectives are to be minimized. The proposed model 
minimizes the value of machining cost (i.e., Objective 1) and 
energy consumption (i.e., Objective 2). In this multi-
optimization, two models are applied under the same 
machining process and conditions using NSGA II, where the 
optimization options are set as follows: 1,000 population size; 
0.9 crossover probability; 0.1 mutation probability; and 200 
iterations. Figures 5 shows that the Pareto optimal front 
resembles a slight curve, which indicates the reduction at the 
peak of the Pareto bend between Objectives 1 and 2. Table 2 
provides the function and variable values, including the five 
most remarkable optimal points, and the optimum machining 
parameters obtained are as follows: v=116 m/min, f=0.195 

 
Figure 2. Effect on tool wear against parameters 

 

 
Figure 3. Effect on energy consumption against parameters 

 
Figure 4. Effect on cost against parameters 
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the machine during start-up, setup state, and rotating spindle 
without cut state, respectively; D is the average diameter of 
the workpiece (mm); l is the length of cut (mm); t0, tst, tair, tt, 
and tc (s) are the start-up, setup, rotating spindles without cut 
state, tool change time, and cutting time, respectively; and k is 
the specific energy requirement in cutting operations (kJ/cm3). 

Equation 2 presents the machining cost of the dry turning 
process. 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑒𝑒𝑃𝑃0𝑡𝑡0 + 𝑥𝑥𝑒𝑒𝑃𝑃𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡 + 𝑥𝑥𝑒𝑒𝑃𝑃𝑡𝑡𝑎𝑎𝑑𝑑𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑 +  𝑥𝑥𝑒𝑒𝑃𝑃𝑡𝑡𝑎𝑎𝑑𝑑

𝜋𝜋.𝐷𝐷.𝑡𝑡
𝑣𝑣.𝑓𝑓 +

𝑥𝑥𝑒𝑒𝑘𝑘 (𝜋𝜋.𝐷𝐷.𝑡𝑡𝑝𝑝.𝑡𝑡
60 ) + 𝑥𝑥𝑒𝑒𝑃𝑃𝑠𝑠𝑡𝑡. 𝑡𝑡𝑡𝑡  (𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣(𝛼𝛼−1)𝑓𝑓(𝛽𝛽−1)𝑎𝑎𝑝𝑝

(𝛾𝛾). 𝑐𝑐−𝛼𝛼) + 𝑥𝑥 (𝑡𝑡0 +  𝑡𝑡𝑠𝑠𝑡𝑡 +
 𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑 +  𝑡𝑡𝑡𝑡 + 𝜋𝜋.𝐷𝐷.𝑡𝑡

𝑣𝑣.𝑓𝑓 ) + (𝑥𝑥 𝑡𝑡𝑡𝑡 +
𝑦𝑦)(𝜋𝜋𝜋𝜋𝜋𝜋𝑣𝑣(𝛼𝛼−1)𝑓𝑓(𝛽𝛽−1)𝑎𝑎𝑝𝑝

(𝛾𝛾)𝑐𝑐−𝛼𝛼)                                                      (2)  
where x, denotes the estimated total cost of labor charge, 
machine charge, and overhead; xe is the energy cost rate; c is 
the coefficient related to the cutting conditions; 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are 
positive constant parameters depending on tool material and 
workpieces. 

Certain data, parameters, and coefficients must be 
determined in advance to implement the multi-optimization of 
energy and cost model. Start-up energy, start-up, setup state, 
and rotating spindle without cut state should be obtained as 
energy data. The cost of cutting tool, machining cost, and 
energy consumed cost should also be determined. According 
to a mechanical engineering manual and Kalpakjian and 
Schmid[9], the coefficients in the optimization model, 
including α, β, γ, c, n, x, y, and k, are determined, and on the 
basis of the current machining practice, the total charge (x) of 
the labor charge, machine charge, and overhead is estimated 
as RM 25 per hour. The cost of power (xe) is 6.91 cent/kWh, 
and the single-tip uncoated carbide tool (CNMG 120408) 
costs RM 28.5 per piece. Therefore, the mean value of a 
single uncoated cutting edge (y) is RM 14.25. According to 
these data, the optimization model for the multi-objective 
problem for dry condition can be established as follows: 
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑑𝑑 = 23.2 ∗ 10−4 + 15.25 ∗ 10−3𝑎𝑎𝑝𝑝 + 253𝑣𝑣−1𝑓𝑓−1 + 800 ∗
                        10−3𝑎𝑎𝑝𝑝𝑣𝑣−1𝑓𝑓−1 + 12 ∗ 10−3𝑎𝑎𝑝𝑝

0.3𝑣𝑣𝑓𝑓0.2                              
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑𝑑𝑑 = 0.03364 +  12.036 × ( 1

𝑣𝑣.𝑓𝑓) +  0.226 ∗  𝑎𝑎𝑝𝑝 +  9.49 ∗
10−6𝑎𝑎𝑝𝑝

0.3𝑣𝑣𝑓𝑓0.2                                                                                                     (4)         
which is subject to the following: 
0.6 < a < 1.6; 
90 < v < 190; 
0.06 < f < 0.23. 
 
3. Results and discussion  
3.1. Evaluation of tool wear  

 The flank wear results are provided in Figure 2. A 
maximum flank wear of 0.3 mm is used as the tool life [17]. 
The main effects are presented by a continuous line, whereas 
the parallel line presents the prediction results. The results 
show that the speed and depth of cut are the most significant 
parameters, whereas feed has no influence. The cutting 
conditions are cutting speed of 110 m/min, feed rate of 0.2 
mm/rev, and depth of 0.6 mm.  
3.2. Evaluation of energy and cost 

Figure 3 shows the plot for energy consumption. The feed 
rate and cutting speed show a negatively significant effect, 
whereas the depth shows a positively significant effect. This 
plot indicates that the feed rate factor is more significant than 
the other parameters. This result shows that the energy value 

significantly decreases from 1.18 kWh to 0.7 kWh when the 
feed changes from low to high level. Similar results were 
reported in [14,15]. 

Figure 4 presents the influence of cutting parameters on 
machining cost. Among the input parameters, feed rate and 
cutting speed exhibit the most significant factor relationships 
sequentially. Moreover, the depth of cut exerts no influence 
on machining cost. 

3.3. Multi-objective optimization-based NSGA II algorithm 
 The Pareto optimal front is obtained by the multi-objective 

optimization-based NSGA II algorithm (MO-NSGA II). 
MATLAB R2013 is used to plot the Pareto optimal front and 
simulate the multi-optimization model. Notably, this front lies 
in the middle of the curve for problems where all two 
objectives are to be minimized. The proposed model 
minimizes the value of machining cost (i.e., Objective 1) and 
energy consumption (i.e., Objective 2). In this multi-
optimization, two models are applied under the same 
machining process and conditions using NSGA II, where the 
optimization options are set as follows: 1,000 population size; 
0.9 crossover probability; 0.1 mutation probability; and 200 
iterations. Figures 5 shows that the Pareto optimal front 
resembles a slight curve, which indicates the reduction at the 
peak of the Pareto bend between Objectives 1 and 2. Table 2 
provides the function and variable values, including the five 
most remarkable optimal points, and the optimum machining 
parameters obtained are as follows: v=116 m/min, f=0.195 

 
Figure 2. Effect on tool wear against parameters 

 

 
Figure 3. Effect on energy consumption against parameters 

 
Figure 4. Effect on cost against parameters 
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mm/rev, and ap = 0.818 mm, whereas the optimal objective 
values are 0.513 kWh and RM 14.951. 
3.4. Verification result 

The present results obtained are verified using two 
approaches. The first approach is standard error calculated on 
the basis of predicted test. Equation 5 is used to estimate the 
optimum predicted response values to verify the model 
developed by multi-objective NSGA II as follows: 

 
Figure 5. Pareto chart of multi-responses for models (F1 unit: 

RM and F2 unit: kWh)  

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑌𝑌𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚 + ∑ (𝑚𝑚
𝑝𝑝=1 𝑌𝑌𝑝𝑝 − 𝑌𝑌𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚)  (5) 

where Ymean is the overall mean value and Yi is the average 
response at the optimum design variable level. The obtained 
results are 0.0425 (95.75%) and 0.0733 (92.66%) for energy 
and cost, respectively. From the accuracy percentage, good 
agreement is noted between the predicted and experimental 
optimum results. 
    In the second approach, the average value of the center 
point is selected for the initial setting and compared with the 
optimal point obtained. The results of the confirmation test 
show an improvement in energy saving of 33.46%, and the 
machining cost is reduced by 17.81%. The results obtained 
with the multi-optimization parameter setting by using NSGA 
II methods for energy consumption and machining cost are 
better than those from the initial setting. 
 
4. Conclusions 

This study provides a new model that is based on a multi-
response optimization method of machining parameters. The 
optimization problem includes minimum energy consumption, 
machining cost, and tool wear, which are influenced by 
cutting speed, feed rate, and depth of cut. The main effect plot 
presents the response mean for each factor level. The 
minimum value of power consumption is obtained at high 
cutting speed and feed rate and low depth of cut. This 
significant energy result is the same as that of machining cost. 
Tool wear is minimized when the cutting speed and depth of 
cut are at their lowest levels. The NSGA II results indicate 
that cutting parameter optimization is beneficial for cost and 
energy saving during turning machining. The energy saving is 
33.46%, and the machining cost is reduced by 17.81%. The 

proposed model effectively minimizes machining cost and 
energy, thereby resulting in the overall enhancement of 
sustainable machining.  
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Table 2. Response values and decision variables by NSGA II 
Energy(kWh) Cost(RM) V(m/min) F(mm/rev) ap(mm) 

0.513 14.951 116.00 0.195 0.818 
0.516 14.914 116.20 0.191 0.816 
0.521 14.954 116.45 0.192 0.812 
0.529 15.013 116.20 0.191 0.816 
0.527 15.021 115.45 0.192 0.812 


