UMP Institutional Repository

An implementation of differential evolution algorithm for a single product and single period multi-echelon supply chain network model

Ayda, Emdadian and Ponnambalam, S. G. and Kanagaraj, G. (2018) An implementation of differential evolution algorithm for a single product and single period multi-echelon supply chain network model. Journal of Modern Manufacturing Systems and Technology, 1. pp. 1-14. ISSN 2636-9575

[img]
Preview
Pdf
An implementation of differential evolution algorithm.pdf

Download (1MB) | Preview

Abstract

In this paper, five variants of Differential Evolution (DE) algorithms are proposed to solve the multi-echelon supply chain network optimization problem. Supply chain network composed of different stages which involves products, services and information flow between suppliers and customers, is a value-added chain that provides customers products with the quickest delivery and the most competitive price. Hence, there is a need to optimize the supply chain by finding the optimum configuration of the network in order to get a good compromise between several objectives. The supply chain problem utilized in this study is taken from literature which incorporates demand, capacity, raw-material availability, and sequencing constraints in order to maximize total profitability. The performance of DE variants has been investigated by solving three stage multi-echelon supply chain network optimization problems for twenty demand scenarios with each supply chain settings. The objective is to find the optimal alignment of procurement, production, and distribution while aiming towards maximizing profit. The results show that the proposed DE algorithm is able to achieve better performance on a set of supply chain problem with different scenarios those obtained by well-known classical GA and PSO.

Item Type: Article
Uncontrolled Keywords: Multi-echelon supply, chain architecture, Evolutionary approach, Differential Evolution algorithms, Swarm intelligence
Subjects: T Technology > TS Manufactures
Faculty/Division: Faculty of Manufacturing Engineering
Depositing User: Noorul Farina Arifin
Date Deposited: 25 Sep 2018 05:01
Last Modified: 12 Nov 2018 01:43
URI: http://umpir.ump.edu.my/id/eprint/22211
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item