# STUDY OF WATER QUALITY FOR RAIN WATER HARVESTING SYSTEMS ON ROOF MATERIAL

# ABDUL MU'IZ BIN EMBONG

B. ENG(HONS.) CIVIL ENGINEERING
UNIVERSITI MALAYSIA PAHANG



#### **SUPERVISOR'S DECLARATION**

"I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering"

\_\_\_\_\_

(Supervisor's Signature)

Full Name : HASMANIE BINTI. ABDUL HALIM

Position : LECTURER

Date : 15 JUNE 2017



#### STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

\_\_\_\_\_

(Student's Signature)

Full Name : ABDUL MU'IZ BIN EMBONG

ID Number : AA13224

Date : 15 JUNE 2017

# STUDY OF WATER QUALITY FOR RAIN WATER HARVESTING SYSTEMS ON ROOF MATERIAL

#### ABDUL MU'IZ BIN EMBONG

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

**JUNE 2017** 

#### **ACKNOWLEDGEMENTS**

Alhamdulillah. Thanks to Allah SWT, the most gracious and most merciful, whom with Him willing giving me strength to complete this Final Year Project. Special thanks to my beloved family, my parents, my brothers and sisters because of their courage and support during the period of completing the thesis. Support and motivates keep me motivated and alive to complete and produce a high quality of thesis.

To my supervisor, Madam Hasmanie binti Abdul Halim, special thanks for all the guidance, motivation and supports, thanks for the time spend with me, idea and courage. The supervision and support that she gave truly help the progression and smoothness of the project. With her presents, teaching and guidance, my final year project gone recognize by university.

In addition, I would like to express my gratitude to my panel, Dr. Mir Sujaul Islam, Dr. Edriyana binti Abdul Aziz and Madam Suryati binti Sulaiman to their valuable suggestions and comments on my work as to improve my research outcomes and meet the objectives of this study. Apart from that, I would like to thank all the lecturers whom have taught me in every semester. They have indeed helped me to reinforce my basic knowledge and theories in this field.

Finally, I would like to express my appreciation to my best colleague mate, Advein a/I Ami, Hasan bin Raja Aznn and all my final year project teammates as they are always shared with me their knowledge in completing the study. Thanks for being with me through my ups and downs. Thanks for the support, courage and assist me on writing and so on.

Once again, thanks to all of you.

## TABLE OF CONTENT

# **DECLARATION**

| ACK  | NOWLEDGEMENTS                                            | ii   |
|------|----------------------------------------------------------|------|
| ABS  | ГРАК                                                     | iii  |
| ABS  | ГКАСТ                                                    | iv   |
| TAB  | LE OF CONTENT                                            | v    |
| LIST | OF TABLES                                                | viii |
| LIST | OF FIGURES                                               | ix   |
| LIST | OF SYMBOLS                                               | xi   |
| LIST | OF ABBREVIATIONS                                         | xii  |
| СНА  | PTER 1 INTRODUCTION                                      | 1    |
| 1.1  | Background of the Study                                  | 1    |
| 1.2  | Problem Statement                                        | 2    |
| 1.3  | Objectives of the Study                                  | 2    |
| 1.4  | Scope of the Study                                       | 2    |
| СНА  | PTER 2 LITERATURE REVIEW                                 | 3    |
| 2.1  | Introduction                                             | 3    |
| 2.2  | Rainwater Harvesting                                     | 3    |
|      | 2.2.1 Problems in Rainwater Harvesting System            | 4    |
| 2.3  | Water Quality Standards                                  | 5    |
|      | 2.3.1 World Health Organization (WHO) Drinking Standards | 5    |

|     | 2.3.2                    | European Union (EU's) Drinking Water Standards | 6  |
|-----|--------------------------|------------------------------------------------|----|
| 2.4 | Water Quality Parameters |                                                | 6  |
|     | 2.4.1                    | рН                                             | 6  |
|     | 2.4.2                    | Conductivity                                   | 7  |
|     | 2.4.3                    | Turbidity                                      | 7  |
|     | 2.4.4                    | Total Suspended Solids                         | 8  |
|     | 2.4.5                    | Nitrate/Nitrites                               | 9  |
| 2.5 | Water                    | Treatment                                      | 9  |
|     | 2.5.1                    | Sand Gravel Filter                             | 10 |
|     | 2.5.2                    | Charcoal Filter (Activated Carbon)             | 10 |
|     | 2.5.3                    | UV Filtration                                  | 11 |
|     | 2.5.4                    | Reverse Osmosis                                | 11 |
| СНА | PTER 3                   | 3 METHODOLOGY                                  | 13 |
| 3.1 | Introd                   | uction                                         | 13 |
| 3.2 | Locati                   | ion of the Study                               | 13 |
| 3.3 | Sampl                    | ling Procedure                                 | 15 |
|     | 3.3.1                    | Sample Preservation                            | 15 |
|     | 3.3.2                    | Sample Labelling                               | 16 |
| 3.4 | Analy                    | tical Method                                   | 16 |
|     | 3.4.1                    | pН                                             | 16 |
|     | 3.4.2                    | Total Suspended Solid (TSS)                    | 17 |
|     | 3.4.3                    | Nitrates/Nitrites                              | 19 |
|     | 3.4.4                    | Escherichia Coli (E-Coli)                      | 19 |
|     | 3.4.5                    | Conductivity                                   | 21 |

| CHA | CHAPTER 4 RESULTS AND DISCUSSION      |    |
|-----|---------------------------------------|----|
| 4.1 | Introduction                          | 23 |
| 4.2 | Water Quality                         |    |
|     | 4.2.1 Temperature                     | 23 |
|     | 4.2.2 pH                              | 25 |
|     | 4.2.3 Turbidity                       | 26 |
|     | 4.2.4 Conductivity                    | 27 |
|     | 4.2.5 Total Suspended Solids (TSS)    | 28 |
|     | 4.2.6 Nitrates                        | 30 |
|     | 4.2.7 Nitrites                        | 31 |
|     | 4.2.8 E-Coli                          | 32 |
|     | 4.2.9 Total Coliform                  | 33 |
| СНА | APTER 5 CONCLUSION AND RECOMMENDATION | 35 |
| 5.1 | Conclusion                            | 35 |
| 5.2 | Recommendation                        | 36 |
| REF | ERENCES                               | 37 |
| APP | ENDIX A                               | 39 |
| APP | ENDIX B                               | 44 |

# LIST OF TABLES

| Table 3.1 | Sample Preservation Technique   | 16 |
|-----------|---------------------------------|----|
| Table 3.2 | Result interpretation of pH     | 17 |
| Table 3.3 | Result interpretation of E-Coli | 20 |

## LIST OF FIGURES

| Figure 2.1  | Contaminants at rooftop gutter system                               | 4  |
|-------------|---------------------------------------------------------------------|----|
| Figure 2.2  | pH Instrument                                                       | 6  |
| Figure 2.3  | Turbidimeter                                                        | 8  |
| Figure 2.4  | Hach DR5000                                                         | 9  |
| Figure 2.5  | Sand Gravel Filter                                                  | 10 |
| Figure 2.6  | Charcoal Filter (Activated Carbon)                                  | 11 |
| Figure 2.7  | Reverse Osmosis Machine                                             | 12 |
| Figure 3.1  | Concrete Flat Roof (KK2 Residential Area) – Point 1                 | 14 |
| Figure 3.2  | Metal Deck Roof (KK2 Residential Area) – Point 2                    | 14 |
| Figure 3.3  | Clay Roof (KK2 Residential Area) – Point 3                          | 15 |
| Figure 3.4  | Proper Sample Labelling                                             | 16 |
| Figure 3.5  | Total Suspended Solids sample after dried in oven                   | 18 |
| Figure 3.6  | Weighing process of TSS sample after dried in room temperature      | 18 |
| Figure 3.7  | Nitrate and Nitrite reagent                                         | 19 |
| Figure 3.8  | E-Coli test reagent                                                 | 20 |
| Figure 3.9  | Colilert nutrient indicator become fluoresces after 24hours         | 21 |
| Figure 3.10 | Instrument to measure Conductivity                                  | 22 |
| Figure 4.1  | Location of catchments area                                         | 23 |
| Figure 4.2  | Temperature value for different types of roof                       | 24 |
| Figure 4.3  | Average of Temperature value for different types of roof            | 24 |
| Figure 4.4  | pH value for different types of roof                                | 25 |
| Figure 4.5  | Average of pH value for different types of roof                     | 26 |
| Figure 4.6  | Turbidity value for different types of roof                         | 27 |
| Figure 4.7  | Average of Turbidity value for different types of roof              | 27 |
| Figure 4.8  | Conductivity value for different types of roof                      | 28 |
| Figure 4.9  | Average of Conductivity value for different types of roof           | 28 |
| Figure 4.10 | Total suspended solids value for different types of roof            | 29 |
| Figure 4.11 | Average of Total suspended solids value for different types of roof | 29 |
| Figure 4.12 | Nitrates value for different types of roof                          | 30 |
| Figure 4.13 | Average of Nitrates value for different types of roof               | 31 |
| Figure 4.14 | Nitrites value for different types of roof                          | 31 |
| Figure 4.15 | Average of Nitrites value for different types of roof               | 32 |
| Figure 4.16 | E-Coli value for different types of roof                            | 33 |

| Figure 4.17 | Average of E-Coli value for different types of roof         | 33 |
|-------------|-------------------------------------------------------------|----|
| Figure 4.18 | Total coliform value for different types of roof            | 34 |
| Figure 4.19 | Average of Total coliform value for different types of roof | 34 |

## LIST OF SYMBOLS

NTU Nephelometric Turbidity Unit

mg/l milligram/litre

MPN/100ml Most Probable Number/100milliliter cfu/100ml Colony Forming Unit/100milliliter

μS microsiemens

#### LIST OF ABBREVIATIONS

TSS Total Suspended Solids

TC Total Coliform

WSP Water and Sanitation Program

RWH Rain Water Harvesting

WQI Water Quality Index

WHO World Health Organization

EU European Union

UV UltraViolet Ray

R.O Reverse Osmosis

KK2 Kolej Kediaman 2

GAC Granular Activated Carbon