THE MECHANICAL PROPERTIES OF EGGSHELL CONCRETE USING QUARRY ROCK DUST AS SAND SUBSTITUTE

LIM YONG ZHAO

B. ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

THE MECHANICAL PROPERTIES OF EGGSHELL CONCRETE USING QUARRY ROCK DUST AS SAND SUBSTITUTE

LIM YONG ZHAO

Thesis submitted in fulfilment of the requirements for the award of the degree of B. Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons) Civil Engineering

Signature	:	
Name of Supervisor	:	DR. DOH SHU ING
Position	:	SENIOR LECTURER
Date	:	13 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	LIM YONG ZHAO
ID Number	:	AA13201
DATE	:	13 JUNE 2017

Dedicated to my parents for their caring and support throughout my life

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my university, University Malaysia Pahang for providing me a chance to complete my thesis with good laboratory facilities and equipment.

Besides that, I would also like to express my deepest gratitude to my supervisor, Dr Doh Shu Ing for his guidance and support which had assists me to accomplish my research study. His consistent encouragement and motivation allowed me to overcome all the obstacles during this study.

Apart from that, I would like to thank all the laboratory assistance whom have assist me during my laboratory work. They have indeed helped me to conduct my experiment.

A special thanks to my friend, Teo Lek Kuan, Hew Lee Guan, Loh Huang Ming, Chuah Zhen Yang and Tan Keen Hong for their help and knowledge sharing which have resources me to complete this research on time.

Last but not least, I would like to thanks to my parent for their love and support throughout this research study.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	Ii
STUDENT'S DECLARATION	Iii
ACKNOWLEDGEMENTS	V
ABSTRACT	Vi
ABSTRAK	Vii
TABLE OF CONTENTS	Viii
LIST OF TABLES	Xi
LIST OF FIGURES	Xii
LIST OF SYMBOLS	Xiv
LIST OF ABBREVIATIONS	Xv

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of Study	3
1.5	Research Significant	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduc	ction	5
2.2	Types of Waste		5
	2.2.1	Recycle Concrete	6
	2.2.2	Rubber	6
	2.2.3	Fly Ash	7
	2.2.4	Silica Fume	8
	2.2.5	Quarry Rock Dust	9
	2.2.6	Eggshell	9
2.3	Types of	f Cementitious Material	10
	2.3.1	Ordinary Portland Cement	10

	2.3.2 Rapid-hardening Portland Cement	11
	29.3.2 Sulphate-resisting Cement	11
2.4	Properties of Quarry Dust	12
2.5	Testing of Fresh Concrete	13
	 2.5.1 Slump Test 2.5.2 Vebe Test 2.5.3 Compacting Factor 	13 14 15
2.6	Harden Concrete	16
	2.6.1 Compressive Strength Test	16
	2.6.2 Tensile Strength Test	17
	2.6.3 Flexural Strength Test	17
	2.6.4 Rebound Hammer Test	18
2.7	General Information of Eggshell Concrete	19

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introduction	n	22
3.2	Materials an	nd Properties	23
	3.2.1	Ordinary Portland Cement	23
	3.2.2	Fine Aggregate	25
	3.2.3	Coarse Aggregate	25
	3.2.4	Quarry Rock Dust	26
	3.2.5	Eggshell	27
	3.2.6	Water	27
3.3	Concrete M	lix Design	28
3.4	Test for Ag	gregate	28
3.5	3.4.1	Sieve Test	28
	Test for Fre	esh Concrete	29
3.6	3.5.1	Slump Test	29
	3.5.2	Vicat Test	30
	Tests for Ha	ardened Concrete	30
	3.6.1	Compressive Strength Test	30
	3.6.2	Flexural Strength Test	32
	3.6.3	Splitting Tensile Test	33

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Int	roduction
---------	-----------

4.2	Properti	es of Aggregate	35
	4.2.1	Sieve Analysis Test	35
4.3	Properti	es of Cement	37
	4.3.1	Vicat Test	37
4.4	Fresh Co	oncrete Properties	38
	4.4.1	Slump Test	38
4.5	Hardene	ed Concrete Properties	40
	4.5.1	Compressive Strength Test	40
	4.5.2	Flexural Strength Test	44
	4.5.3	Splitting Tensile Test	45
4.5	Conclud	ling Remark	47

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

Introduction	48
Conclusions	48
Recommendations	49
NCES	51
ICES	54
Setting Time Result	54
Compressive Strength Result	58
	Conclusions Recommendations NCES ICES Setting Time Result

С	Flexural Strength Result	59
D	Splitting Tensile Strength Result	60
E	Photos of Laboratory Preparation and Test	61

LIST OF TABLES

Table No.	Title	Pages
2.1	Physical properties of quarry rock dust and natural sand	12
2.2	Chemical properties of quarry rock dust and natural sand	13
2.3	Description of workability and compacting factor	16
3.1	Physical and chemical properties of OPC	24
3.2	Mix proportion table	29
4.1	Fine aggregate sieve analysis result	37
4.2	Vicat result of different mix type	38
4.3	Slump result of different mix type	40
4.4	Compressive strength result	42
4.5	Flexural strength result	45
4.6	Splitting tensile strength result	47

LIST OF FIGURES

Figure No.	Title	Pages
2.1	Types of slump	14
2.2	Vebe apparatus	15
2.3	Plot of splitting tensile strength and the modulus of rapture against compressive strength of concrete	18
2.4	Relationship between compressive strength and rebound number of concrete aggregate cylinder with different size of aggregates	19
3.1	Flow chart of this research	22
3.2	Fine aggregate	25
3.3	Coarse aggregate	26
3.4	Quarry rock dust	26
3.5	Dried eggshell	27
3.6	Sieve test	29
3.7	Classification of slump result	29
3.8	Vicat test	30
3.9	Compressive test machine	31
3.10	Flexural test machine	32
3.11	Splitting tensile machine	34
4.1	Grading curve of quarry rock dust	37
4.2	Slump result of PA ₀	40
4.3	Slump result of PA ₄	41
4.4	Graph of compressive strength against quarry rock dust content	43
4.5	Compressive strength of different quarry rock dust content at curing age of 7,14 and 28 day	44

4.6	Flexural strength of PA ₀ and PA ₄	46
4.7	Splitting tensile strength of PA ₀ and PA ₄	47

LIST OF SYMBOLS

%	Percentage
mm	Millimeter
N/mm ²	Newton per millimeter square
kg	Kilogram
Ν	Newton
C	Degree Celsius
M ² /kg	Meter square per kilogram
w/c	Water to cement ratio
mm ²	Millimeter square
min	Minute
μm	Micrometer
MPa	Mega Pascal
±	Plus-Minus

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
Al ₂ O ₃	Aluminum Oxide
ASTM	American Society for Testing and Materials
BS	British Standard
CaO	Calcium Oxide
Ca(OH) ₂	Calcium Hydroxide
C ₃ A	Tricalcium aluminate
CSH	Calcium Silicate Hydrate
C_3S	Tricalcium Silicate
EN	European Standards
Fe ₂ O ₃	Ferric Oxide
IS	Indian Standards
K ₂ O	Potassium Oxide
MgO	Magnesium Oxide
MS	Malaysia Standard
Na ₂ O	Sodium Oxide
OPC	Ordinary Portland Cement
PA ₀	0% of Quarry Rock Dust Aggregate
PA ₁	25% of Quarry Rock Dust Aggregate
PA ₂	50% of Quarry Rock Dust Aggregate
PA ₃	75% of Quarry Rock Dust Aggregate
PA ₄	100% of Quarry Rock Dust Aggregate
RCA	Recycle Concrete Aggregate

TiO₂ Titanium Dioxide

USBR United States Bureau of Reclamation