LONGTERM RAINFALL VARIABILITY AND CHANGES IN KUANTAN RIVER BASIN

NUR FARISHA BINTI RAHAIZAK

B. ENG(HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering.

Full Name : Position : Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

Full Name: NUR FARISHA BINTI RAHAIZAKID Number: AA13197Date: 16 JUNE 2017

LONGTERM RAINFALL VARIABILITY AND CHANGES IN KUANTAN RIVER BASIN

NUR FARISHA BINTI RAHAIZAK

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2017

DEDICATION

Dedicated to my mother and my late father. This one is for you.

ACKNOWLEDGEMENTS

All praises due to the most high for granting me such patience and ability to finish this thesis paper. I am beyond grateful and thankful for all the guidance coming from my only supervisor, Dr. Nurul Nadrah Aqilah Binti Tukimat. Her tolerance and patience in guiding me in writing this research paper is beyond anything. I have always amazed how she managed to encourage me to finish strong with this Degree program just with her outstanding professional conduct and her vivid knowledge in this field. My sincere gratitude for her never ending support and always keeps her students in check throughout writing this paper and her countless hours she spent proofreading it. I appreciate all of the advices she gave me be it field related or life advices, she will always be one of the people I look up to in the future.

My sincere thanks go to all of my friends who have been helping me with their constant support in making this research possible. Especially to my research members, I am beyond grateful for all of the knowledge sharing and excellent co-operation during this study. My most gratitude would be for my family members especially my mother for her love and care and always keep me in her prayers and her faith in my ability to go through this for the successful completion of this study.

TABLE OF CONTENT

DEC	CLARATI	ION	
TIT	LE PAGE	E	
DED	DICATIO	N	
ACK	KNOWLE	EDGEMENTS	ii
ABS	TRAK		iii
ABS	TRACT		iv
TAB	BLE OF C	CONTENT	v
LIST	Г OF TAI	BLES	viii
LIST	Г OF FIG	GURES	ix
CHA	APTER 1	INTRODUCTION	1
1.1	Introdu	action	1
1.2	Statem	nent of Problems	2
1.3	Objecti	ives of the Study	3
1.4	Scopes	s of the Study	4
1.5	The Im	nportance of the Study	5
CHA	APTER 2	LITERATURE REVIEW	6
2.1	Introdu	action	6
2.2	History	y of Climate Model Development	12
2.3	Global Climate Models (GCMs)		15
	2.3.1	Dynamical Downscaling (DD)	20
	2.3.2	Statistical Downscaling (SD)	22

2.4	Performances of Statistical Downscaling Model (SDSM)		24
	2.4.1	Predictors Selection in SDSM	27
	2.4.2	Emission Scenarios	28
		2.4.2.1 RCP Primary Characteristics	30
СНА	PTER 3	METHODOLOGY	37
3.1	Introdu	action	37
3.2	Statistical Downscaling Model (SDSM)		37
	3.2.1	Calibration and Validation of SDSM	39
	3.2.2	SDSM Climatic Scenario	40
	3.2.3	Screening Process in SDSM	43
	3.2.4	Predictors Selection	44
3.4	Area of	f Performances	46
СНА	PTER 4	RESULTS AND DISCUSSION	47
4.1	Introdu	iction	47
4.2	Predict	tors Selection	48
4.3	Temperature Result		50
	4.3.1	Calibration and Validation Analysis	50
	4.3.2	Temperature GCM Projection Year 2040-2069	53
4.4	Rainfall Analysis		59
	4.4.1	The Performances of Rainfall Simulations	59
	4.4.2	Rainfall GCM Projection Year 2040-2069	63

CHAPTER 5 CONCLUSION

5.1	Introduction		
	5.1.1	Validation of SDSM	81
	5.1.2	Climate Projections	82
5.2	Recom	mendations	83

REFERENCES

84

81

LIST OF TABLES

Table 2.1	Comparison between GCM and NWP	18
Table 2.2	Comparisons between SD and DD	24
Table 2.3	RCP Data Types, Emissions Sectors and Geographical Resolution	31
Table 2.4	Emissions and Concentrations, Forcings and Temperature Anomalies	32
Table 2.5	Comparisons between RCPs and SRES Equivalents	33
Table 3.1	SDSM File Names and Directory Structures	42
Table 3.2	List of NCEP Predictors	45
Table 3.3	Rainfall Stations and Historical Period	46
Table 4.1	Calibration and Validation Year on Each Station	48
Table 4.2	Predictors Selection in Temperature Station	49
Table 4.3	Predictors Selection in Six Rainfall Station	50
Table 4.4	Statistical Analysis for Temperature	51
Table 4.5	Statistical Analysis for Rainfall	61
Table 4.6	Average Annual Rainfall for Historical Data and GCM Projections in Paya Besar	64
Table 4.7	Average Annual Rainfall for Historical Data and GCM Projections in Ladang Nada	67
Table 4.8	Average Annual Rainfall for Historical Data and GCM Projections in Ladang Kuala Reman	70
Table 4.9	Average Annual Rainfall for Historical Data and GCM Projections in Paya Pinang	73
Table 4.10	Average Annual Rainfall for Historical Data and GCM Projections in Atabara	76
Table 4.11	Average Annual Rainfall for Historical Data and GCM Projections in Sg. Lembing	79

LIST OF FIGURES

Figure 2.1	Atlantic Focused Ocean Simulation	13
Figure 2.2	Description of GCM	17
Figure 2.3	Changes in Radiative Forcing Relative to Pre-Industrial Conditions	34
Figure 2.4	Emissions of Main Greenhouse Gases across the RCPs	35
Figure 2.5	Trends in Concentrations of Greenhouse Gases	36
Figure 3.1	Methodology of Study	40
Figure 4.1	Comparisons the Performances of Calibrated and Validated Results for Max, Mean and Min Temperature	52
Figure 4.2	RCP Projections in Maximum Temperature in 2040-2069	54
Figure 4.3	RCP Projections in Mean Temperature in 2040-2069	55
Figure 4.4	RCP Projections in Minimum Temperature in 2040-2069	57
Figure 4.5	Maximum Temperature GCM Projection in 2040-2069	58
Figure 4.6	Mean Temperature GCM Projection in 2040-2069	58
Figure 4.7	Minimum Temperature GCM Projection in 2040-2069	59
Figure 4.8	Comparison between Calibrated and Validated Results with Historical Data for 6 Rainfall Stations	60
Figure 4.9	RCP Projections in Paya Besar in 2040-2069	63
Figure 4.10	Average Annual Rainfall for Historical Data and GCM Projections in Paya Besar	65
Figure 4.11	RCP Projections in Ladang Nada in 2040-2069	66
Figure 4.12	Average Annual Rainfall for Historical Data and GCM Projections in Ladang Nada	68
Figure 4.13	RCP Projections in Ladang Kuala Reman in 2040-2069	69
Figure 4.14	Average Annual Rainfall for Historical Data and GCM Projections in Ladang Kuala Reman	71
Figure 4.15	RCP Projections in Paya Pinang in 2040-2069	72
Figure 4.16	Average Annual Rainfall for Historical Data and GCM Projections in Paya Pinang	74
Figure 4.17	RCP Projections in Atabara in 2040-2069	75
Figure 4.18	Average Annual Rainfall for Historical Data and GCM Projections in Atabara	77
Figure 4.19	RCP Projections in Sg. Lembing in 2040-2069	78
Figure 4.20	Average Annual Rainfall for Historical Data and GCM Projections in Sg. Lembing	80