FINITE ELEMENT ANALYSIS OF COLD-FORMED STEEL STRUCTURAL MEMBERS WITH DIFFERENT ARRANGEMENT OF PERFORATIONS

NUR IDAYU BINTI IBRAHIM

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering & Earth Resources.

(Supervisor's Signature) Full Name : KHALIMI JOHAN BIN ABD HAMID Position : LECTURER Date : 19TH JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NUR IDAYU BINTI IBRAHIM ID Number : AA13179 Date : 19TH JUNE 2017

FINITE ELEMENT ANALYSIS OF COLD-FORMED STEEL STRUCTURAL MEMBERS WITH DIFFERENT ARRANGEMENT OF PERFORATIONS

NUR IDAYU BINTI IBRAHIM

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

All praised to ALLAH S.W.T

SPECIALLY DEDICATED To my beloved parents

Salbíah Bíntí Yusof Ibrahím Bín Daud

My beloved siblings

Izuddín Bín Ibrahím Izzuan Bín Ibrahím Ikhmal Bín Ibrahím Mohd. Izzat Bín Ibrahím Nur Ilaní Bíntí Ibrahím

My beloved in laws

Noraíshah Bíntí Ismaíl Nuranís Bíntí Omar Noraíní Bíntí Daud Nurul Dalíla Bíntí Che Johar

And my líttle sweet níeces and nephews Zahírah, Irdína, Zíyyad, Afnan, Inas

Thanks for supporting me until this level of journey, May ALLAH bless all of you, my big family ©

ACKNOWLEDGEMENTS

In the name of Allah SWT the most gracious and most merciful, Alhamdulillah with His permission the research has been completed.

I would like to express my sincere gratitude for those who helped me in finishing this Final Year Project (FYP). Especially to Mr. Khalimi Johan Bin Abd Hamid for the continuous support of my degree study and research, for his patience, motivation, enthusiasm, and knowledge. His guidance helped me in all the time of research and writing of this thesis. I am really grateful for having him as my good advisor and mentor for my degree study.

Besides my advisor, I would like to thank the rest of my civil engineering degree's friends especially my FYP teammates Nurul Amira Binti Amilruddin, Nurul Atikah Binti Zulkipli, and Nur Zayani Binti Zaharuddin and also my housemates Nur Asyikin Binti Ruhanuddin, Nur Fathin Nadhirah Binti Mohd Noor, Siti Robiah Binti Arshad, and Nurhasbazilah Binti Rusli for their encouragement, insightful comments, interesting ideas and knowledges in completing my research.

Not to forget, I would like to thank my beloved family: especially my mom Salbiah Binti Yusof, my dad Ibrahim Bin Daud, my brothers Izuddin, Izzuan, Ikhmal, Mohd. Izzat, and my sister Nur Ilani and my in laws for always supporting me spiritually throughout my degree life and always make me cheer whenever I am having difficulties in finishing my degree life. May Allah S.W.T rewards all of you with his blessings.

TABLE OF CONTENT

DEC	CLARATION		
TIT	LE PAGE		
ACK	KNOWLEDGEMENTS	ii	
ABS	TRAK	iii	
ABS	TRACT	iv	
LIST	Γ OF TABLES	viii	
LIST	Γ OF FIGURES	ix	
LIST	LIST OF SYMBOLS xii		
LIST	Γ OF ABBREVIATIONS	xiii	
CHA	APTER 1 INTRODUCTION	1	
1.1	Introduction	1	
1.2	Problem Statement	4	
1.3	Objectives of Research	4	
1.4	Scopes of Research	5	
1.5	Significance of Study	8	
CHA	APTER 2 LITERATURE REVIEW	9	
2.1	Introduction	9	
2.2	Advantages of Cold-formed Section	10	
2.3	Cold-formed with Perforations	11	
2.4	Different Types of Perforations & Arrangements	11	
2.5	Buckling Behavior of Cold-formed Steel Sections	13	

	2.5.1 Local Buck	ling	14
	2.5.2 Distortiona	l Buckling	14
	2.5.3 Global Buc	kling	15
2.6	Previous Research		17
СНА	PTER 3 METHOD	OLOGY	18
3.1	Introduction		18
3.2	Finite Element Me	thod	18
3.3	Experiment Setup		
3.4	Project Flow		20
3.5	Procedures of Mod	leling Column Using LUSAS	22
	3.5.1 Modeling t	he structure	22
	3.5.2 Assign the	type of meshing	24
	3.5.3 Assign the	type of geometries	25
	3.5.4 Assign the	type of material properties	26
	3.5.5 Set the sup	port of the column	26
	3.5.6 Set the load	ling of the column	28
	3.5.7 Complete r	nodeling in Finite Element (LUSAS)	29
СНА	PTER 4 RESULTS	AND DISCUSSION	30
4.1	Introduction		30
4.2	Result of Linear A	nalysis	30
	4.2.1 Deformed	Mesh	31
	4.2.1.1 Fixed E	nded Support	31
	4.2.1.2 Pinned H	Ended Support	33
	4.2.2 Maximum	stress, Nmax	35
	4.2.2.1 Fixed E	nded Support	35

	4.2.2.2	Pinned Ended Support	40
	4.2.3 M	laximum strain, Emax	45
	4.2.3.1	Fixed Ended Support	45
	4.2.3.2	Pinned Ended Support	49
4.3	Result of	Linear Buckling Analysis	53
	4.3.1 Fi	ixed Ended Support	53
	4.3.1.1	Short Column (600 mm)	54
	4.3.1.2	Intermediate Column (1500 mm)	57
	4.3.1.3	Slender Column (2000 mm)	60
	4.3.2 Pi	inned Ended Support	64
	4.3.2.1	Short Column (600 mm)	65
	4.3.2.2	Intermediate Column (1500 mm)	68
	4.3.2.3	Slender Column (2000 mm)	71
CHA	PTER 5 C	ONCLUSION	75
5.1	Introduct	ion	75
5.2	Conclusio	on	75
5.3	Recomme	endation	76
REFI	REFERENCES		77

LIST OF TABLES

Table 1.1	Column testing parameter	7
Table 4.1	Buckling load for short column	63
Table 4.2	Buckling load for intermediate column	63
Table 4.3	Buckling load for slender column	63
Table 4.4	Buckling load for short column	74
Table 4.5	Buckling load for intermediate column	74
Table 4.6	Buckling load for slender column	74

LIST OF FIGURES

Figure 1.1	Roof truss using cold-formed steel	1
Figure 1.2	Residential area using cold-formed steel	2
Figure 1.3	Press-braking process	3
Figure 1.4	Roll-forming process	3
Figure 1.5	C-section configuration	5
Figure 1.6	Perforations position for short column (600 mm) a) 600-150.0, b) 600-172.5, c) 600-195.0, d) 600-217.5, e) 600-240.0, f) 600-262.5, g) 600-NH	5
Figure 1.7	Perforations position for intermediate column (1500 mm) for a) 1500-150.0, b) 1500-172.5, c) 1500-195.0, d) 1500-217.5, e) 1500- 240.0, f) 1500-262.5, g) 1500-NH	6
Figure 1.8	Perforations position for slender column (2000 mm) for a) 2000- 150.0, b) 2000-172.5, c) 2000-195.0, d) 2000-217.5, e) 2000-240.0, f) 2000-262.5, g) 2000-NH	6
Figure 2.1	Shapes of cold-formed section (Mahmood et. al., 2005)	9
Figure 2.2	Opening spacing (Ling et. al., 2015)	12
Figure 2.3	The arrangement of perforations with different distance of perforations (Reddy S. et. al., 2016)	12
Figure 2.4	Geometric configurations of web openings	13
Figure 2.5	Local buckling (M. P. Kulatunga et. al., 2013)	14
Figure 2.6	Distortional buckling (M. P. Kulatunga et. al., 2013)	14
Figure 2.7	Flexural buckling of a column (Gardner and Baddoo, 2006)	15
Figure 2.8	Flexural-torsional buckling (Young, 2005)	16
Figure 2.9	Perforation positions (M. P. Kulatunga et. al., 2013)	17
Figure 3.1	Laboratory testing setup	19
Figure 3.2	Laboratory testing	20
Figure 3.3	Flow chart of project	21
Figure 3.4	New model	22
Figure 3.5	Entering the coordinates	22
Figure 3.6	Connecting all the nodes	23
Figure 3.7	Mirror the section	23
Figure 3.8	Sweeping tool	24
Figure 3.9	Surface mesh attribute	25
Figure 3.10	Geometric surface attribute	25
Figure 3.11	Material properties attribute	26

Figure 3.12	Bottom support condition	27
Figure 3.13	Top support condition	27
Figure 3.14	Using global distributed load (Total)	28
Figure 3.15	Model geometry	29
Figure 3.16	Model with meshing using QSL8	29
Figure 3.17	Complete modeling with support and loading	29
Figure 4.1	Deformed mesh for short column (600 mm)	32
Figure 4.2	Deformed mesh for intermediate column (1500 mm)	32
Figure 4.3	Deformed mesh for slender column (2000 mm)	32
Figure 4.4	Deformed mesh for short column (600 mm)	34
Figure 4.5	Deformed mesh for intermediate column (1500 mm)	34
Figure 4.6	Deformed mesh for slender column (2000 mm)	34
Figure 4.7	Maximum stress, Nmax for short column (600 mm)	37
Figure 4.8	Maximum stress, Nmax for intermediate column (1500 mm)	38
Figure 4.9	Maximum stress, Nmax for slender column (2000 mm)	39
Figure 4.10	Maximum stress, Nmax for short column (600 mm)	42
Figure 4.11	Maximum stress, Nmax for intermediate column (1500 mm)	43
Figure 4.12	Maximum stress, Nmax for slender column (2000 mm)	44
Figure 4.13	Maximum strain, Emax for short column (600 mm)	46
Figure 4.14	Maximum strain, Emax for intermediate column (1500 mm)	47
Figure 4.15	Maximum strain, Emax for slender column (2000 mm)	48
Figure 4.16	Maximum strain, Emax for short column (600 mm)	50
Figure 4.17	Maximum strain, Emax for intermediate column (1500 mm)	51
Figure 4.18	Maximum strain, Emax for slender column (2000 mm)	52
Figure 4.19	Eigenvalue 1 for short column (600 mm)	54
Figure 4.20	Eigenvalue 2 for short column (600 mm)	55
Figure 4.21	Eigenvalue 3 for short column (600 mm)	56
Figure 4.22	Eigenvalue 1 for intermediate column (1500 mm)	57
Figure 4.23	Eigenvalue 2 for intermediate column (1500 mm)	58
Figure 4.24	Eigenvalue 3 for intermediate column (1500 mm)	59
Figure 4.25	Eigenvalue 1 for slender column (2000 mm)	60
Figure 4.26	Eigenvalue 2 for slender column (2000 mm)	61
Figure 4.27	Eigenvalue 3 for slender column (2000 mm)	62
Figure 4.28	Eigenvalue 1 for short column (600 mm)	65
Figure 4.29	Eigenvalue 2 for short column (600 mm)	66

Figure 4.30	Eigenvalue 3 for short column (600mm)	67
Figure 4.31	Eigenvalue 1 for intermediate column (1500mm)	68
Figure 4.32	Eigenvalue 2 for intermediate column (1500mm)	69
Figure 4.33	Eigenvalue 3 for intermediate column (1500mm)	70
Figure 4.34	Eigenvalue 1 for slender column (2000mm)	71
Figure 4.35	Eigenvakue 2 for slender column (2000mm)	72
Figure 4.36	Eigenvalue 3 for slender column (2000mm) -	73

LIST OF SYMBOLS

E	Young Modulus
V	Poisson Ratio
N _{max}	Stress Maximum
E_{max}	Strain Maximum

LIST OF ABBREVIATIONS

LUSAS	London University Structural Analysis Software
FE	Finite Element
FEM	Finite Element Method
FEA	Finite Element Analysis
QSL8	Quadrilateral Thin Shell Elements with 8 Nodes Clockwise