## MECHANICAL BEHAVIOUR OF FIRE DAMAGED STEEL FIBRE REINFORCED CONCRETE (SFRC)

NORLILA BINTI OMAR

# B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG



## SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Degree of Civil Engineering

(Supervisor's Signature)Full Name: MOHAMMAD AMIRULKHAIRI BIN ZUBIRPosition: LECTURERDate: 19<sup>th</sup> JUNE 2017



### **STUDENT'S DECLARATION**

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : NORLILA BINTI OMAR ID Number : AA13210 Date : 19<sup>th</sup> JUNE 2017

## MECHANICAL BEHAVIOUR OF FIRE DAMAGED STEEL FIBRE REINFORCED CONCRETE (SFRC)

### NORLILA BINTI OMAR

Thesis submitted in fulfillment of the requirements for the award of the Bachelor Degree in Civil Engineering

Faculty of Civil Engineering and Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2017

#### ACKNOWLEDGEMENTS

In the name of Allah S.W.T, the Most Gracious, the Ever Merciful. Praise is to Allah swt, Lord of the Universe and Peace and Prayers be upon His final Prophet and Messenger Muhammad S.A.W. I would like to give my gratitude to Allah S.W.T for all his blessing to me, for the good health and wellbeing that were necessary to complete complete this research and thesis writing as requirement for my final year project as a student of Civil Engineering Bachelor.

I wish to express my sincere thanks to Mr. Mohammad Amirulkhairi bin Zubir, as my supervisor, for providing me with all the necessary knowledge, criticism and advices for me during performing this research. With the encouragement and guidance that helped me a lot in completing the study and writing of this thesis starts from the beginning to the end of my research.

I am also grateful to all laboratory technicians, in the Concrete and Heavy Structure Laboratory of the Faculty of Civil Engineering and Earth Resources at Universiti Malaysia Pahang. I am extremely thankful and indebted to them for sharing technically expertise, and patience and valuable guidance extended to me. And I am also immensely grateful to Dr, Irwan and Dr. Gul Ahmed Jokhio as my presentation panels for their comments and advices during my presentation regarding to my research project,

Not being forgotten, I take this golden opportunity to express gratitude to all of my family members especially my parents for their unconditional love, unceasing encouragement, time and understanding, help and also support in many aspect during my research. I am also grateful to my special person, Faris Khalid who always supported me through this venture. And I also thank to all beloved friends especially Liyana Bahron, Sara Izzah, Iffah Izzati, Azyyatul Shahira, Aiman Hakimi, Asraf Kamaludin for sharing their precious knowledge, constructive advices and for always be ready to lend a helping hand for me in completing this research. I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lent their hand in this venture.

## TABLE OF CONTENT

ii

# DECLARATION TITLE PAGE ACKNOWLEDGEMENTS

| ABS  | STRAK                                  | iii  |
|------|----------------------------------------|------|
| ABS  | STRACT                                 | iv   |
| ТАВ  | BLE OF CONTENT                         | v    |
| LIST | vii                                    |      |
| LIST | T OF FIGURES                           | viii |
| LIST | T OF SYMBOLS                           | ix   |
| LIST | T OF ABBREVIATIONS                     | X    |
| CHA  | APTER 1 INTRODUCTION                   | 1    |
| 1.1  | Introduction                           | 1    |
| 1.2  | Background of Study                    | 3    |
| 1.3  | Problem Statement                      | 5    |
| 1.4  | Objectives                             | 6    |
| 1.5  | Scope of study                         | 6    |
| 1.6  | Significant of Study                   | 7    |
| 1.7  | Conclusion                             | 8    |
| CHA  | APTER 2 LITERATURE REVIEW              | 9    |
| 2.1  | Introduction                           | 9    |
| 2.2  | Properties of Concrete                 | 9    |
|      | 2.2.1 Concrete strength                | 11   |
|      | 2.2.2 Durability of Concrete           | 13   |
| 2.3  | Steel Fibre Reinforced Concrete (SFRC) | 14   |

| 2.4 | Fire Resistance of Concrete                                            | 15 |
|-----|------------------------------------------------------------------------|----|
| 2.5 | Mechanical Properties of Concrete at Elevated Temperature              |    |
| 2.6 | Type of Failure Mode                                                   | 17 |
| 2.7 | Advantages and Disadvantages of Steel Fibre Reinforced Concrete (SFRC) | 18 |
| 2.8 | Conclusion                                                             | 19 |
| СНА | PTER 3 METHODOLOGY                                                     | 20 |
| 3.1 | Introduction                                                           | 20 |
| 3.2 | Material Preparation                                                   | 21 |
| 3.3 | Concrete Mix Design                                                    |    |
| 3.4 | Laboratory Testing                                                     | 23 |
|     | 3.4.1 Compression Test                                                 | 24 |
|     | 3.4.2 Flexural Test                                                    | 25 |
|     | 3.4.3 Indirect Tensile Test                                            | 26 |
| 3.5 | Curing Process                                                         | 27 |
| 3.6 | Heating and Cooling Process                                            | 27 |
| 3.7 | Conclusion                                                             | 28 |
| СНА | PTER 4 RESULTS AND DISCUSSION                                          | 29 |
| 4.1 | Introduction                                                           | 29 |
| 4.2 | Flexural Test for Beam Specimens                                       | 33 |
| 4.3 | Indirect Tensile Test for Cylindrical Specimens                        | 37 |
| 4.4 | Conclusion                                                             | 43 |
| СНА | PTER 5 CONCLUSION                                                      | 44 |
| 5.1 | Introduction                                                           | 44 |
| 5.2 | Conclusion                                                             | 44 |
| 5.3 | Recommendation                                                         | 46 |
| REF | ERENCES                                                                | 48 |
| APP | ENDIX A table of concrete mix design                                   | 50 |

## LIST OF TABLES

| Table 4.1 | Result in Compressive Strength After 7 days Curing Age  | 30 |
|-----------|---------------------------------------------------------|----|
| Table 4.2 | Result in Compressive Strength After 28 days Curing Age | 31 |
| Table 4.3 | Result in Flexural Strength After 7 days Curing Age     | 33 |
| Table 4.4 | Result in Flexural Strength After 28 days Curing Age    | 34 |
| Table 4.5 | Result in Tensile Strength After 7 days Curing Age      | 37 |
| Table 4.6 | Result in Tensile Strength After 28 days Curing Age     | 38 |

## LIST OF FIGURES

| Fresh Concrete (Mehta, 1999)                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardened Concrete (Mehta, 1999)                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Compressive Strength after 28 days (McDonald D., 2012)              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Types of Concrete Durability and Its Example                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Flow chart of research methodology                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wasted Wire Mesh or Steel Wire (known as Tire Wire Strap)           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Compression test                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result of average maximum compressive strength after 7 days curing  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result of average maximum compressive strength after 28 days curing | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result of average maximum flexural strength after 7 days curing     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result of average maximum flexural strength after 28 days curing    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result of average maximum tensile strength after 7 days curing      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Result of average maximum tensile strength after 28 days curing     | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Specimens before laboratory testing                                 | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cube specimens after testing                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Beam specimen after testing                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cylindrical specimens after testing                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | Hardened Concrete (Mehta, 1999)<br>Compressive Strength after 28 days (McDonald D., 2012)<br>Types of Concrete Durability and Its Example<br>Flow chart of research methodology<br>Wasted Wire Mesh or Steel Wire (known as Tire Wire Strap)<br>Compression test<br>Result of average maximum compressive strength after 7 days<br>curing<br>Result of average maximum compressive strength after 28 days<br>curing<br>Result of average maximum flexural strength after 7 days curing<br>Result of average maximum flexural strength after 7 days curing<br>Result of average maximum tensile strength after 7 days curing<br>Result of average maximum tensile strength after 7 days curing<br>Cube specimens after testing<br>Beam specimen after testing |

## LIST OF SYMBOLS

| R                  | modulus of the rupture (N/mm <sup>2</sup> or MPa)       |
|--------------------|---------------------------------------------------------|
| Р                  | maximum load carried by the specimen during testing (N) |
| L                  | span length (mm)                                        |
| b                  | average width of specimen at the fraction (mm)          |
| d                  | average depth of specimen at the fraction (mm)          |
| f <sub>ct.sp</sub> | splitting tensile strength (MPa)                        |
| Fu                 | measured peak load (N)                                  |
| D                  | diameter of specimen (mm)                               |
| L                  | length of specimen (mm)                                 |
| °C                 | Celcius                                                 |
| °F                 | Fahrenheit                                              |
| Μ                  | Mega                                                    |
| Ра                 | Pascal                                                  |
| Ν                  | Newton                                                  |
| N/mm²              | Newton per millimetre square                            |
| kg                 | Kilogram                                                |
| %                  | Percentage                                              |

## LIST OF ABBREVIATIONS

| ASTM | American Society for Testing and Materials |
|------|--------------------------------------------|
| BS   | British Standard                           |
| MR   | Modulus of Rupture                         |
| SFRC | Steel Fibre Reinforced Concrete            |
|      |                                            |