SUPPORTED LIQUID MEMBRANE FOR ACETIC ACID EXTRACTION: SCREENING OF MEMBRANE SUPPORT PREPARATION FACTORS

SITI AISYAH BINTI ABDULL MALID

BACHELOR OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

SUPPORTED LIQUID MEMBRANE FOR ACETIC ACID EXTRACTION: SCREENING OF MEMBRANE SUPPORT PREPARATION FACTORS

SITI AISYAH BINTI ABDULL MALID

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: AP DR SYED MOHD SAUFI BIN TUAN CHIK
Position	: SENIOR LECTURER
Date	: 20 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature	:
Name	: SITI AISYAH BINTI ABDULL MALID
ID Number	: KA 13149
Date	: 20 JUNE 2017

Dedicated to my family and friends.

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor, AP Dr. Syed Mohd Saufi. You have been a brilliant mentor for me. I would like to thank you for your never ending support during my tenure as research student under your guidance, for giving insightful comments and suggestions of which without it, my research path would be a difficult one. Your advice on my research has been valuable.

A special thanks to my family. Words cannot express how grateful I am to my mother, father and siblings for the love and support throughout these years. Your prayer for me was what sustained me this far.

I would also like to thank all of my friends who supported me in writing, and motivate me to strive towards my goal. I am sincerely grateful to the staffs at Faculty of Chemical and Natural Resources Engineering who helped me in many ways.

TABLE OF CONTENTS

		Page
SUP	PERVISOR'S DECLARATION	ii
STU	JDENT'S DECLARATION	iii
ACH	KNOWLEDGEMENT	v
ABS	STRACT	vi
ABS	STRAK	vii
TAE	BLE OF CONTENTS	viii
LIS	T OF TABLES	X
LIS	T OF FIGURES	xi
LIS	T OF SYMBOLS	xii
LIS	T OF ABBREVIATIONS	xiii
CHA	APTER 1 INTRODUCTION	1
1.1	Background of the Study	1
1.2	Motivation	3
1.3	Problem Statement	3
1.4	Research Objectives	5
1.5	Research Scopes	5
CHA	APTER 2 LITERATURE REVIEW	6
2.1	Energy	6
2.2	Biomass	8
2.3	Biomass Processing in Biorefinery	11
2.4	Acetic Acid Removal Technologies	13
2.5	Background of Membrane	13
2.6	Liquid Membrane	14
2.7	Polymeric Membrane Composition	17
2.8	Fabrication Method of Flat Sheet Membrane	19
2.9	Screening by Full Factorial Design	21
CHA	APTER 3 METHODOLOGY	23
3.1	Chemicals	23
3.2	Preparation of Dope Polymer Solution	24
3.3	Flat Sheet Membrane Casting and Phase Separation Process	26
3.4	Supported Liquid Membrane System	29
3.5	Membrane Characterization	30

	3.5.1	Contact Angle Measurement	30
	3.5.2	Porosity Measurement	30
3.6	High Per	rformance Liquid Chromatography	31
3.7	Screening by Full Factorial Design		31
СНА	PTER 4	RESULTS AND DISCUSSION	34
4.1	Design o	of Experiment (DOE) and data analysis	34
4.2	Main Effect Analysis38		
4.3	3 Interaction between Factors 39		
	4.3.1	Interaction Effect of Water Bath Temperature and Exposure Time	39
	4.3.2	Interaction Effect of Exposure Time and Air Humidity	40
	4.3.3	Interaction Effect of water Bath Temperature and An Humdity	41
СНА	PTER 5	CONCLUSION AND RECOMMENDATION	42
5.1	Conclusi	ion	42
5.2	Recommendation 4		43
REF	ERENCE	S	44
Арре	endix		49
APP	APPENDIX A: Standard Curve for Acetic Acid		49
APP	ENDIX B	: Result of Acetic Acid Extraction Analyze By HPLC	50

ix

LIST OF TABLES

Table No.	Title	Page
Table 2.1: Pros and cons of re-	enewable and non-renewable energy (Barbara, 201	6) 7
Table 2.2: Sources of biomas	s (Forestry.gov.uk, 2016)	9
Table 2.3: Top 10 oil palm pr	oducer in world (Hossain et al. 2016)	10
Table 3.1: List of chemical ar	nd brand	24
Table 3.2: Summary data of c	lesign experiment	32
Table 3.3: Screening of param	neters using full factorial design	33
Table 4.1: Experimental designmental	gn of extraction of acetic acid using 2 ³ full factoria	l design
		35
Table 4.2: Analysis of variand	ce model	37
Table 4.3: Percentage contrib	ution of each factor and their interaction	39

LIST OF FIGURES

Figure No.	Title	Page
Figure 2.1: Illustration of the	e complex structure of lignocellulosic biomass	11
Figure 2.2: Thermochemical	and biochemical processing of lignocellulosic bioma	.ss 11
Figure 2.3: Schematic diagra	am of a simplified bioethanol production from biomas	s (Xie
et al., 2005)		12
Figure 2.4: Classification of	membrane with different pore size	14
Figure 2.5: Different configu	urations of liquid membrane system. F represent the	source
of feed phase, E is the liquid	membrane and R is the receiving phase	15
Figure 2.6: Schematic diagra	am of non-solvent induced phase separation	20
Figure 2.7: Schematic diagra	am of voids formed during VIPS method	21
Figure 3.1: Preparation of o	dope polymer solution using IKA C-MAG HS 7 br	randed
motorize stirrer		25
Figure 3.2: Removal of air b	ubbles in dope solution by using ultrasonic machine	26
Figure 3.3: Arrangement for	r membrane casting at different humidity using hum	idifier
in a box		27
Figure 3.4: Equipment for m	embrane casting	27
Figure 3.5: Immersion of r	nembrane in water coagulation bath for 30 minutes	s after
exposed to the air.		28
Figure 3.6: Immersion of me	embrane in water bath for 24 hours	28
Figure 3.7: Schematic diagra	am for SLM system	29
Figure 4.1: Half normal plot		35
Figure 4.2: Pareto chart		36
Figure 4.3: Interaction grap	h between water bath temperature (A) and exposure	e time
(B)		40
Figure 4.4: Interaction graph	between exposure time (B) and air humidity (C)	41
Figure 4.5: Interaction graph	between water bath temperature (A) and air humidi	ity (C)
		41

LIST OF SYMBOLS

%	Percent
μm	Micrometer
8	Overall porosity
°C	degree Celcius
Α	Temperature of water bath
В	Exposure time
С	Air humidity
C _{fi}	Initial concentration in feed phase
C_{fo}	Final concentration in feed phase
Cs	Concentrations in strip phase
ρ	Density of oil
Ε	Liquid membrane phase
F	Feed phase
R	Receiving phase
S	Seconds
W_1	Weight of wet membrane
<i>W</i> ₂	Weight of dry membrane
wt	Weight
x	Variables
у	Response

LIST OF ABBREVIATIONS

ANOVA	Analysis of variance
BLM	Bulk liquid membrane
CA	Contact angle
CCD	Central composite design
DMAc	Dimethylacetamide
EFB	Empty fruit bunches
ELM	Emulsion liquid membrane
EU	European Union
FSSLM	Flat sheet supported liquid membrane
HFSLM	Hollow fiber supported liquid membrane
HLB	Hydrophilic-lipophilic balance
HMF	Hydroxymethyl furfural
HPLC	High performance liquid chromatography
LM	Liquid membrane
MF	Microfiltration
NF	Nanofiltration
NIPS	Non solvent induced phase separation
PEG	Polyethylene glycol
PEO	Polyethylene oxide
PES	Polyethersulfones
PS	Polysulfones
PVDF	Polyvinylidene difluoride
PVP	Polyvinylpyrolidene
RH	Relative humidity

RO	Reverse osmosis
RSM	Response surface methodology
SLM	Supported liquid membrane
TIPS	Thermally induced phase separations
UF	Ultrafiltration
UK	United Kingdom
UPLC	Ultra performance liquid chromatography
VIPS	Vapour induced phase separations