ISOLATION OF XYLANOLYTIC BACTERIA FROM LANDFILL SOIL AND PRODUCTION OF ENZYME FROM THE ISOLATE

NUR IDAYU BINTI AB WAHAB

BACHELOR OF CHEMICAL ENGINEERING UNIVERSITI MALAYSIA PAHANG

ISOLATION OF XYLANOLYTIC BACTERIA FROM LANDFILL SOIL AND PRODUCTION OF ENZYME FROM THE ISOLATE

NUR IDAYU BINTI AB WAHAB

Thesis is submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2017

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: DR ROHAIDA BT CHE MAN
Position	: SENIOR LECTURER
Date	: 20 JUNE 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature:Name: NUR IDAYU BT AB WAHABID Number: KA13157Date: 20 JUNE 2017

Dedicated to my beloved father and mother. For their endless love, support and encouragement.

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor, Dr. Rohaida bt Che Man. You have been a brilliant mentor for me. I would like to thank you for your never ending support during my tenure as research student under your guidance and your advice on my research has been valuable.

A special thanks to my family. Words cannot express how grateful I am to my mother, father and my siblings for the love and support throughout these years. Your prayer for me was what sustained me thus far.

I would also like to thank all of my friends who supported me in writing, and motivate me to strive towards my goal. I am sincerely grateful to the staffs of Chemical Engineering and Natural Resources Faculty who helped me in many ways.

TABLE OF CONTENTS

			Page
SUP	PERVISO	PR'S DECLARATION	ii
STU	JDENT'S	DECLARATION	iii
ACI	KNOWLI	EDGEMENT	v
ABS	STRACT		vi
ABS	STRAK		vii
TAI	BLE OF (CONTENTS	viii
LIS	T OF TA	BLES	X
LIS	T OF FIG	GURES	xi
LIS	T OF SY	MBOLS	xii
LIS	T OF AB	BREVIATIONS	xiii
CH	APTER 1	INTRODUCTION	1
1.1	Backgr	ound of the Study	1
1.2	Motiva	tion	3
1.3	Problem	n Statement	3
1.4	Objecti	ves	3
1.5	Scopes	of Study	4
CH	APTER 2	LITERATURE REVIEW	5
2.1	Munici	pal Solid Waste (MSW)	5
2.2	Xylano	lytic Bacteria	8
2.3	Xylana	se	10
2.4	Isolatio	on of Microorganism	12
	2.4.1	Serial Dilution	12
	2.4.2 2.4.3	Spread Plate Technique	13
2.5	Method	ls of Xylanase Production	14
	2.5.1 2.5.2	Submerged Fermentation (SmF) Solid-State Fermentation (SSF)	14 15
2.6	Applica	ations of Xylanase	16
	2.6.1 2.6.2 2.6.3	Food and Feed Industry Bio Bleaching Pulp and Paper Baking Industry	16 16 16
CH	APTER 3	METHODOLOGY	17
3.1	Overvie	ew	17
3.2	Sample	Collection	18

3.3	Isolatior	n of Microorganism from Landfill Soil	18
	3.3.1 3.3.2	Media Preparation Serial Dilution and Spread Plate Technique	18 18
3.4	Identific	ation of Microorganism	19
	3.4.1	Gram Staining	19
3.5	Quanlita	tive Screening of Xylanolytic Bacteria	20
	3.5.1 3.5.2	Inoculum Preparation Crude Enzyme Preparation	20 20
3.6	Quantita	tive Screening of Xylanolytic Bacteria	20
3.7	Growth	Profile of Microbe and Production of Xylanase from the Isolate	21
CHA	PTER 4	RESULTS AND DISCUSSION	22
4.1	Isolatior	n, Characterization and Purification of Microorganism	22
	4.1.1 4.1.2 4.1.3	Serial dilution and Spread Plate Technique Morphological Characteristic of Isolates Gram Staining of the Isolates	22 24 26
4.2	Qualitat	ive Screening of Xylanolytic Microorganism	27
4.3	3 Quantitative Screening of Xylanolytic Microorgansim 29		
4.4	Growth	Profile of Microbe and Production of Xylanase from the Isolate	30
СНА	PTER 5	CONCLUSION AND RECOMMENDATION	31
5.1	Conclus	ion	31
5.2	2 Recommendation 31		
REF	ERENCE	ES	32

ix

LIST OF TABLES

Table No.	Title	Page
Table 2.1:	Sources and types of MSW	6
Table 2.2:	MSW generated from different economics household	7
Table 2.3:	Types and number of disposal sites in Malaysia	
Table 2.4:	The microorganisms that can produce xylanase	9
Table 2.5:	Comparison of chemical and enzymatic hydrolysis	11
Table 4.1:	Number of isolates found in landfill soil	
Table 4.2:	Morphological charateristics of isolates	

Table 4.3 : Results for gram staining of isolates	. 27
Table 4.4 : Diameter of halo zone on enzyme production by microorganism	. 28

LIST OF FIGURES

Figure No.	Title	Page
Figure 1.1 : Municipal solic	l waste composition in Kuala Lumpur	1
Figure 2.1: Serial dilution to	echnique	
Figure 2.2: Pour Plate Tech	nique	
Figure 2.3: Spread Plate Te	chnique	
Figure 3.1: Research projec	t methodology	
Figure 3.2: Procedure of gra	am staining technique	
Figure 4.1: Development of	microorganism on nutrient agar plate with different	nt dilution
factor		
Figure 4.2: Colonial morph	ological characteristic; form, elevation and margin	24
Figure 4.3: Gram staining a	and morphology of isolates (A) Gram positive / Ba	acilli ; (B)
Gram positive / Cocci ; (C)	Gram negative / Coccobacilli	
Figure 4.4: Xylan agar plate	e showed the halo zone produced	
Figure 4.5: Xylanase activit	y of the three isolates	
Figure 4.6: Enzyme activity	v of xylanase by isolate C3	

LIST OF SYMBOLS

°C	degree	Celciu
C	ucgice	CUIUI

%	Percentage
---	------------

- μ Micro
- g Gram
- L Litre
- min Minutes
- hr Hour
- yr Year
- mL Millilitre
- nm Nanometre
- w Weight
- v Volume
- M Molar
- rpm Revolution per minute
- pH Potential hydrogen

LIST OF ABBREVIATIONS

MSW	Municipal solid waste
sp	Species
SmF	Submerged Fermentation
SSF	Solid-state Fermentation
uv-vis	Ultraviolet-visible
IU	International Unit
DNS	Dinitrosalicylic acid
KNO ₃	Potassium nitrate
KH ₂ PO ₄	Monopotassium phosphate
MgSO ₄	Magnesium sulfate
(NH ₄) ₂ SO ₄	Ammonium sulfate