Data driven hybrid evolutionary analytical approach for multi objective location allocation decisions: Automotive green supply chain empirical evidence

Ian ShivrajDoolun^a; S.G.Ponnambalam^b; NachiappanSubramanian^{ce}; KanagarajG^d
^aDematic Pty Ltd., 24 Narabang Way, Belrose, NSW, 2085, Australia
^bFaculty of Manufacturing Engineering, Universiti Malaysia Pahang, 26600 Pekan, Malaysia
^cSchool of Business Management and Economics, University of Sussex, Falmer, Brighton BN19SL, United Kingdom
^dDepartment of Mechatronics Engineering, Thiagarajar College of Engineering, Madurai 625015, India
^eVisiting Scholar, Nottingham University Business School China, The University of Nottingham Ningbo China, Ningbo 315100, China

ABSTRACT

The strategic location of manufacturing plants and warehouses and the allocation of resources to the various stages of a supply chain using big data is of paramount importance in the era of internet of things. A multi-objective mathematical model is formulated in this paper to solve a location-allocation problem in a multi-echelon supply chain network to optimize three objectives simultaneously such as minimization of total supply chain cost (TSCC), maximization of fill rate and minimization of CO₂ emissions. Data driven hybrid evolutionary analytical approach is proposed by integrating Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) to handle multiple objectives into Differential Evolution (DE) algorithm. Five variants of the hybrid algorithm are evaluated in addition to comparing the performance with the existing Multi-Objective Hybrid Particle Swarm Optimization (MOHPSO) algorithm. Extensive computational experiments confirm the superiority of the proposed Data driven hybrid evolutionary analytical approach over the existing MOHPSO algorithm. This study identifies a specific variant that is capable of producing the best solution in a higher order simulated instances and complex realistic scenario such as an automotive electronic parts supply chain in Malaysia.

KEYWORDS:

Location-allocation decision; Supply chain network; Multi-objective differential evolution; Big data