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Abstract—Brain-Computer Interface (BCI) or Human-
Machine Interface (HMI) now becoming vital engineering and 
technology field which applying EEG technologies to provide 
Assistive Technology (AT) to humans. This paper presents the 
analysis of EEG signals from various human cognitive or mental 
states to determine the suitable EEG features that can be 
employed to control multiple devices.  Here, EEG features in 
term of average of power spectrum, standard deviation of power 
spectrum and spectral centroid of power spectrum are selected to 
recognize human mental or cognitive state from 3 difference 
exercises; i) solving math problem, ii) Playing game and iii) do 
nothing (relax). We have calculated average power spectrum, 
average standard deviation of power spectrum and average 
spectral centroid of power spectrum of alpha and beta band for 
three mental exercises.  

Keywords—BCI, HMI, EEG features, Power spectrum, 
Standard veviation, Spectral centroid, Cognitive state 

I. INTRODUCTION  
Brain Computer Interface (BCI) can be familiarized as a direct 
communication pathway that makes an interaction between 
human brain and digital computer to control the external 
devices. The whole process is done without having any touch 
of muscular body part. Easiness in operations for disabled 
people can be ensured by this system, especially for those who 
have no control of their normal muscular body to operate the 
peripheral devices. Besides medical applications, currently, 
BCI field have been extended to playing games [1-2], BCI 
speller [3-4], cursor control [5-6],  social interactions by 
detecting emotions [7-8], robotic arm control [9-10], 
wheelchair control [11-12], home appliances control [13] or 
Smart phone operation using Electroencephalogram (EEG) 
[14] to help disabled persons. Nowadays, BCI is an 
interesting, vibrant and highly interdisciplinary research topic 
which involves psychology, neurology, signal processing and 
machine learning.  

Generally, BCI can be segmented into five different phases or 
segments. The first phase involved the acquisition of EEG 
signals from human's head, second phase is pre-processing of 
EEG signals to remove artifacts, third phase is to extract the 
most effective features, fourth phase is to classify the EEG 
signals according to the selected EEG features and the final 
phase is to control devices by translating the classified 
features into machine code [15-17]. Among all these phases, 
feature extraction acts as the most vital role in any BCI system 
based on EEG because of any incorrect selection of the EEG 
features will cause misclassification that may create wrong 
commands given to the devices. As a result, the BCI system 
might malfunction that may cause harm to the disabled people.  

Subject Dependent Multivariate Empirical Mode 
Decomposition (SD-MEMD) is a technique for feature 
extraction used in MI based BCI that is proposed in [18]. With 
the help of MEMD algorithm, this feature decomposes the 
multi-channel EEG into a set of Intrinsic Mode Functions 
(IMFs).  After a careful selection of the task related IMF 
subset an enhanced EEG is re-constructed. Classification 
accuracy can be improved by 5.76% by this feature. The 
amplitude frequency analysis (AFA), the density matrix (DM) 
and the recurrence quantification analysis have been merged 
to generate the phase space feature (PSF) vector [19]. This 
feature is efficient to classify the left hand and right hand 
movement. Here, the combination of EMD and BP from the 
EEG signals for feature extraction has been proposed in [20]. 
Here, EMD is applied to select only the IMFs corresponding 
to sensor motor rhythms (mu and beta) using Welch-based 
Power Spectral Density (PSD) to extract the reliable 
information of EEG signals. Analytic intrinsic mode functions 
(AIMFs) have been proposed in [21] as features for automatic 
classification of EEG signals based on MI tasks. Empirical 
mode decomposition and Hilbert transform are applied on raw 
data to form AIMFs. Spectral moment of power spectral 
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density, raw moment of the first derivative of instantaneous 
frequency, peak value of PSD and area are the features 
obtained from AIMFs. During wavelet packet analysis 
(WPA), a slow cortical potential (SCP) has been studied 
instead of using traditional time or frequency domain 
methods. Applying WPA with the combination of log energy 
entropy enables to find cortical negativity as well as cortical 
positivity in self-regulation of SCPs, as discussed in article 
[22]. In article [23], the features have been computed from 
beta and gamma bands and the features were the combinations 
of Wavelet decomposition, standard deviation, mean and PSD. 
In this article, average spectral density, standard deviation and 
spectral centroid of EEG alpha and beta frequency band have 
been analyzed to find the best possible feature that may 
increase the classifier accuracy and can be employed by 
microcontroller to control device. This article has been 
organized in the following sections i.e. section II, III & IV 
discusses issues related to EEG Measurements and Protocols, 
methodology, results and discussion respectively; finally, 
section V deals with the conclusion. 

II. EEG MEASUREMENT AND PROTOCOL 
There are a lot of EEG headsets in the market to capture EEG 
raw data. In this research, Neurosky Mindwave mobile EEG 
headset was used for collecting EEG raw data. This EEG 
headset contains one electrode and this electrode is placed on 
the FP1 area of the human brain.  There is a reference 
electrode which is connected with the ear lobe. This EEG 
amplifier captures the raw EEG data at 512 Hz sampling rate. 
During EEG data acquisition, a EEG mobile app called eegID 
in the mobile phone and the Neurosky Mindwave are paired 
through the Bluetooth shown in Figure 1.  

 

 

 

 

 
 
 
 

Fig. 1. Raw EEG data acquisition procedure. 

For this research, two male and one female subject were 
selected and their age range is from 20 to 27 years old. There 
are three exercise modes are set-up for experimental procedure 
which are do nothing (relax), solving math quickly and 
playing game shown in table 1. The duration of every data was 
one minute.  

 

 

 

TABLE I.  RAW EEG WITH DIFFERENT MENTAL EXERCISE 

Subject 
Number 

Mode of Exercise  
Solving Math 

Quickly-A 
Do Nothing 
(Relax)-B 

Playing game-
C 

Subject-1 
Age-23 
Male 

1A 1B 1C 

Subject-2 
Age-25 
Female 

2A 2B 2C 

Subject-3 
Age-25 
Male 

3A 3B 3C 

 

III. METHODOLOGY 
There are some fundamental steps that must be done in to 
make a BCI system which are data acquisition, preprocessing, 
feature extraction, classification and translational algorithm. 
From these steps, feature extraction plays a vital role to form a 
BCI application because proper feature selection increases the 
classification accuracy as well as the performance of BCI 
devices. Various EEG features and feature extraction 
techniques have been come out by the BCI researchers that to 
be used in the BCI applications. The most usable EEG 
features by the BCI researcher are band power spectrum, 
energy spectral density, spectral centroid, common spatial 
pattern, wavelet transformations, wavelet packet 
decomposition, independent component analysis, 
autoregressive model, principal component analysis, cross-
correlation, variant, co-variant, short-time Fourier Transform, 
Shannon’s entropy and z-score [24-27]. In this research, 
average power spectral density, standard deviation and 
spectral centroid of EEG alpha and beta band have been 
analyzed as EEG features.  

A. Experiment Flow Chart  
The experiment flow chart of this research is shown in figure-
2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Experimental flow chart. 
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Generally, artifact due to eye blinks and muscle movement 
generate EEG above 100 μV [28]. After collecting the EEG 
data according to measurement protocol, a threshold value of 
100 μV was set and the EEG data above the threshold values 
were rejected to remove the eye movements and blinks 
artifacts. For each EEG channel, there are five frequency 
bands which are delta (0.5-4Hz), theta (4–8Hz), alpha(8–
13Hz), beta(13–30Hz) and gamma(30–45Hz) [29]. In this 
research, the EEG data was filtered into alpha and beta band 
only. Then Fast Fourier Transform is applied on alpha and 
beta frequency band to calculate average power spectrum, 
average standard deviation and average spectral centroid. 

B. Power Spectrum and Spectral Centroid  
With the help of Fast Fourier Transformation (FFT), the 
power spectrum of the EEG data has been calculated. The 
equation (1) for FFT is given as:  [30] 

 
     

      (1) 
 
 
 

 
Where one value of ‘k’ has N complex multiplications, since 
‘k’ = 0, 1… N-1. The multiplication of x (n) and wkn  was done 
for N times, since n = 0 to N-1. The Spectral Centroids are 
calculated using formula in equation (2). 
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Equation (2) shows the equation of Spectral Centroids which 
is used to find the centre value of the each EEG frequency 
bands [31]. 

IV. RESULTS AND DISCUSSION  

A. EEG Raw Data  
In Figure 3, the raw EEG data of subject-1 for three modes of 
exercise have been plotted in first row and in second row the 
FFT have been plotted. In the figure A, B and C denote the 
mental states of solving math quickly, do nothing (relax) and 
playing game respectively. Similar figure can be plotted for 
subject-2 and for subject-3. 

 
Fig. 3. Ploting raw and FFT of EEG data. 

 
 

B. Filtered EEG Data  
After preprocessing, the EEG data have been filtered into two 
frequency band known as alpha and beta frequency band. The 
frequency range of alpha and beta band are (8-13 Hz) and (13-

30 Hz) respectively. Figure 4 shows the plotting of alpha and 
beta band in time domain for subject-1 with three mental 
exercises. Similarly, Figure5 shows the plotting of alpha and 



beta band in frequency domain for subject-1 with three mental 
exercises. 
 

 
 
 

Fig. 4. Ploting raw EEG data of alpha and beta band for subject-1.  

Fig. 5. Ploting FFT EEG data of alpha and beta band for subject-1.  
 

C. Average Power Spectrum 
Average power spectrum of EEG alpha and beta band for 

all subjects with three modes of mental exercise have been 
calculated and listed in Table II. These values have also been 
plotted in figure-6. From Figure 6, it is clear that the average  

 

 

power spectrum of beta band is higher than the alpha band for 
all subjects in three modes of mental exercise.  

 

 

 



TABLE II.  AVERAGE POWER SPECTRAL VALUES  

Subjects Frequency 
Band 

EEG data for 3 mode of exercise 

A B C 
Subject-1 Alpha 1048.9 497.4 659.7 

Beta 1719.2 753.5 1211.3 

Subject-2 Alpha 873.2 465.8 671.5 

Beta 1528.6 640.8 1213.9 

Subject-3 Alpha 829.6 293.3 721.7 

Beta 1521 403.7 1326.4 

 

 

Fig. 6. Ploting average power spectral of alpha and beta band. 

D.  Spectral Centroid 
Spectral centroid is another effective feature for BCI 

classification. Like average power, spectral centroids of EEG 
alpha and beta band for three subjects were computed in table-
III and also plotted in figure-7. Here, the average spectral 
centroid of beta band is also higher than the alpha band. 

TABLE III.  AVERAGE SPECTRAL CENTROID VALUES  

Subjects Frequency 
Band 

EEG data for 3 mode of exercise 

A B C 
Subject-1 Alpha 37.57 38.7 44.72 

Beta 135.7 113.4 82.5 

Subject-2 Alpha 38.2 41.6 38.8 

Beta 148.7 135.2 145.9 

Subject-3 Alpha 47.9 40.4 37.5 

Beta 159.2 103.8 93.1 

 

 

Fig. 7. Ploting average spectral centroid of alpha and beta band. 

E. Standard Daviation 
Average standard deviations of alpha and beta band for all 

data have been listed in table-IV and also plotted these values 
in figure-8. In case of standard deviation, the average standard 
deviation of alpha band is higher than beta band for all 
subjects when they were in relax (B) condition.  When the 
subjects were doing math quickly (A) and playing game (C) 
then the average standard deviation of beta band is higher than 
alpha band. 

TABLE IV.  AVERAGE STANDARD DEVIATION VALUES  

Subjects Frequency 
Band 

EEG data for 3 mode of exercise 

A B C 
Subject-1 Alpha 6694.2 3576 4429.4 

Beta 7075.5 3181 4886.1 

Subject-2 Alpha 5900.2 3365.7 4689.2 

Beta 6305.3 2647.6 5044.2 

Subject-3 Alpha 5763.1 2097.6 4760.1 

Beta 6324.8 1682.7 5437.9 

 

 

Fig. 8. Ploting average standard deviation of alpha and beta band. 



V. CONCLUSION 
This research is conducted to determine the suitable EEG 

features that can be used to control multiple devices. From the 
results of the research, it shows that the spectral centroid and 
standard deviation of power spectrum of EEG Alpha and Beta 
band can be used to indicate the change in human cognitive 
state apparently. Thus, those EEG features can be used in 
different classification algorithms to get the best result. Then 
the classifier result will be applied to the translation algorithm 
to control the device. To achieve the best classifier accuracy, 
number of subject should be increased. 
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