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1. Introduction

Mobile cloud computing (MCC) is characterized as 
the augmentation of cloud computing with another 
ad-hoc infrastructure for mobile gadgets [7]. MCC 
is a promising framework that brings effective 
cloud computing into a versatile processing 
condition, in which mobile devices interface with 
the internet via a wireless network, and afterward, 
associate with the remote cloud [18]. MCC at its 
easiest, alludes to an infrastructure where data 
storage and processing occur exteriorly to mobile 
gadgets [10]. This is a rising cloud benefit model 
which is succeeding the pattern to spread out the 
cloud to the brink of systems [28]. In addition, it 
encourages the building of smart mobile gadgets 
with improved cloud accessibility [13]. This is an 
internet-based generation where mobile devices 
are loaded with many applications. The context 
is distinctively contrasting with mobile computing 
since in MCC, gadgets run cloud-centered web 
applications whereas mobile computing runs 
with apps [27]. With the fast growth of mobile 
applications accompanied by cloud computing, 
MCC as a promising technology aimed at 
mobile services is drawing more attention [22]. 
The primary components of MCC include the 
migration of computationally intensive tasks 
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or applications to servers in cloud domain in 
order to execute them, and after that, recover the 
outcome of the execution from these servers [8]. 
It utilizes communication technology to share 
information and assets and incorporates location-
aware technologies, mobile access to IT, and 
energy sparing technology specifically designed 
for mobile devices [15]. As of late, mobile 
applications have been noticeably copious with 
different classes, such as entertainment, health, 
games, business, social networking, travel, and 
news [21][5][24]. 

In the cloud, the load assigned to every node in 
the network is similarly distributed with an even 
quantity of resources over time. This enhances the 
scheme performance by moving the workloads 
among various nodes [4][26]. The primary goal is 
to expedite the implementation of applications on 
resources whose workload changes at the runtime 
in an unpredictable way. These are generally 
discussed in homogeneous conditions such as 
grids. Fundamentally, there are two ways of load 
balancing procedures: (i) Static and (ii) dynamic 
[3]. The load balancing plan and a migration policy 
are aimed at virtual machine (VM) clustering to 
brilliantly choose a VM from an over-burdened 
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resource and transfer it elsewhere where the load 
is less [25]. A load-balancing heuristic mechanism 
ensures the offloading of resources to the cloud, 
with the aim that the balance between the mobile 
device and cloud is augmented [14]. Load 
balancing in cloud ought to be dispersed, flexible 
and extensible. Albeit, many works have been 
done in various aspects of a distributed scheme 
on the issue of load balancing [2]. Load balancing, 
along with high resource usage, is accomplished 
by getting all the physical resources used, and 
after that, initializes the VM movement based on 
a pre-determined approach [20][1].  

In cloud computing, load balancing or resource 
control is a major challenge. Load balancing is a 
procedure of workload distribution over various 
PCs or different resources over the system link 
to accomplish an ideal resource use, expand 
throughput, reduce response time, and keep away 
from over-burden [6]. To take a shot at load 
balancing, conventional algorithms like First 
Agent-Based Dynamic Load Balancing in Cloud 
Computing (ABDLB) [11], Load Balancing Ant 
Colony Optimization (LBACO) [16], First Come 
First Serve (FCFS), Round Robin (R), Random 
Allocation (R), Shortest Job First (SJF) and 
Longest Job First (LJF) are not adequate, and the 
meta-heuristic algorithms such as Evolutionary 
Algorithms and Swarm Intelligent Algorithms 
have been investigated [12][23]. The algorithm 
presented in this study is an efficient load balancing 
technique believed to be suitable for application 
in a cloud computing environment. This study 
contributes to the existing body of knowledge on 
load balancing in the following ways:

•	 Developing a Krill Herd behavior-inspired 
algorithm for an effective scheduling and 
balancing of non-preemptive independent 
tasks in cloud computing environments.

•	 Surveying the merits and demerits of the 
existing load balancing algorithms.

•	 Correlating the suggested Krill-LB algorithm 
with actual foraging behavior of Krill Herd 
using a clear flow diagram of the behavioral 
control structures of Krill herd and Krill-LB.

•	 Performing a systematic and analytical 
study with mathematical evidence of the 
performance of the proposed algorithm in a 
cloud computing environment.

•	 Benchmarking the performance of the 
proposed algorithm with that of the existing 
load balancing algorithms.

The current paper is organized as follows: 
Section 1 presents the study background and 

the problem to be addressed, while Section 2 
presents a review of the related studies, followed 
by a discussion of the strengths and weaknesses 
of the existing protocols. Section 3 introduces 
the proposed algorithm, the experimental 
steps, algorithm pseudocode, diagrams and 
mathematical equations, while Section 4 discusses 
the results of the experimental studies which have 
been compared to the existing load balancing 
algorithms. The last section concludes the study.

2. Related Works

Yanmin Gong et al. [9] have studied the privacy 
issues in the ad-hoc mobile cloud computing 
and suggested a structure that can ensure area 
privacy while assigning works to mobile devices. 
Their mechanism centered on differential privacy 
along with geocast. In addition, it enables mobile 
devices to accord their resources to the ad-hoc 
mobile cloud that is deprived of leaking their 
location details. They created analytical models 
and task allocation methodologies that balance 
privacy, utility and framework overhead in an ad-
hoc mobile cloud. They additionally performed 
several experiments based on real-world datasets, 
and the outcomes demonstrated that this structure 
can secure the location privacy of mobile gadgets 
while furnishing compelling administrations with 
low framework overhead. 

Kezhi Wang et al. [29] in C-RAN had suggested a 
joint energy minimization, together with resource 
allocation accompanied by MCC below the time 
restriction of the provided undertakings. They 
initially evaluated the energy and time model 
of the computation and communication. At that 
point, they have formulated the joint energy 
minimization into a non-convex optimization, 
accompanied by the limitation of transmitting 
power, computation capacity, a task executing time 
and also front haul information rates. They non-
convex optimization was afterward, redeveloped 
into an identical convex issue in light of weighted 
minimum mean square error (WMMSE). In 
C-RAN accompanied by mobile cloud, an 
iterative algorithm was at last assigned to manage 
joint resource allocation. The simulation results 
affirmed that the suggested energy minimization 
and resource allotment solution can enhance the 
framework performance and save energy.  

Changsheng You et al. [30] suggested a resource 
allotment aimed at a multiuser MECO framework 
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based on time-division multiple access (TDMA) 
accompanied by orthogonal frequency-division 
multiple access (OFDMA). To begin with, the 
ideal resource allocation intended for the TDMA 
MECO framework with infinite or finite cloud 
computation capacity was framed as a convex 
optimization issue for reducing the weighted 
totality mobile energy consumption under the 
limitation of computation latency. The ideal 
strategy was demonstrated to require a threshold-
based structure with regard to an inferred 
offloading priority function that provides priorities 
for clients as indicated by their channel profits 
along with local computing energy consumption. 
Accordingly, clients with needs higher or below 
a given threshold separately perform a complete 
and least offloading. In addition, a sub-optimal 
resource-allocation algorithm meant for the cloud 
with limited capacity was suggested to lessen the 
multifaceted nature of computation for calculating 
the threshold. Subsequently, they considered that 
the OFDMA MECO framework, aimed at an ideal 
resource allotment as a mixed-integer issue.  

Yanchen Liu et al. [19] suggested an Adaptive 
Multi-Resource Allocation, aimed at cloudlet-
based MCC scheme. The suggested multi-
resource allocation plan improves the mobile 
cloud service quality in terms of the framework 
throughput and service latency. They formulated 
the resource allocation model as a semi-Markov 
decision procedure below the average cost norm 
and additionally tackled the optimization issue 
using linear programming techniques. An ideal 
resource allocation guiding principle has been 
ascertained through maximizing the long-standing 
compensate while meeting the framework 
necessities of the demand blocking probability 
and service time latency. From the simulation 
outcome, it was demonstrated that the framework 
adaptively balanced the allocation policy on how 
much resources to be assigned and whether to 
utilize the distant cloud in line with the traffic of 
requested mobile services and the accessibility 
of resources in the framework. Their algorithm 
outperformed the greedy admission control on a 
broad range of environment.

Hongbin Liang et al. [17] suggested a service 
decision-making system meant for interdomain 
service exchange to adjust the computation loads 
among different cloud domains. Their framework 
concentrates on augmenting the prizes for both the 
cloud framework and the clients by limiting the 

extent of service dismissals that debase the client 
fulfillment level fundamentally. They figured 
the service entreaty decision-making procedure 
as a semi-Markov decision method. The ideal 
service transfer decisions were achieved by jointly 
considering the framework incomes and costs. 
Our system is an extensive simulation which 
demonstrated that the suggested decision-making 
procedure enhanced the framework outcomes and 
lessened service disturbances compared to the 
insatiable approach [6]. Finally, the calculation of 
energy-cost aware for an improved load balancing 
was performed and the demand aimed at the most 
minimal energy was done at cloudlet mediator.

3. Krill Load Balancing and Dynamic 
Energy-Aware in Mobile Cloud 
Computing

This paper suggested an optimized load balancing 
along with a modified dynamic energy aware 
cloudlet model in resource allocation. The Krill 
herd optimization algorithm was employed 
to augment load balancing; centered on the 
successful parameters such as speed, task cost, 
and weight. After the load balancing, the modified 
dynamic energy-aware cloudlet-based mobile 
cloud computing model (MDECM) was shown 
to reduce the service rate and energy of mobile 
devices, thereby achieving the intended energy 
cost aware and an effective resource allocation. 
The block diagram of the suggested framework 
is shown in Figure 1. 

Figure 1. Block diagram of the suggested system



http://www.sic.ici.ro

416 Raed Abdulkareem Hasan, Muamer N Mohammed

3.1 Service allocator

Initially, the task demands from all the 
mobile customers were directed to the cloud 
domain. The task demands were first collected 
from all the clients at a remote site signified 
as { }nrrrrR ,....,, 321= , where R is the 
arrangement of the task demands from the 
mobile clients. 

The task demands were gathered from the 
users at each time by the service allocator 
who considers both the tasks and the service. 
The service allocator designates the service 
for each demand. In the suggested work, 
an optimized load balancing, together with 
a modified DECM were used for effective 
resource allocation. These are further presented 
in the following subsections. 

3.2 Krill herd-inspired load balancing 
(KH-LB)

In MCC, load balancing is employed for an 
optimized resource usage, maximize throughput, 
lessen response time, and evade over-burden of 
any single resource. Load balancing enhances 
the dissemination of workloads over many 
computing resources. In clouds, load balancing 
is a separate task that takes place in the VM as an 
imperative part of task scheduling. The load must 
be balanced at any time some VMs are laden to 
achieve an optimal machine use. VMs are under-
stocked with tasks for processing. To reduce the 
issue of energy loss during load balancing, the 
proposed work utilized a Krill herd optimized 
load adjusting technique. Load balancing 
procedures solve the issue of load irregularity 
amongst VMs and are effective in decreasing the 
influence of span and response time. 

The Krill herd load balancing (KH-LB) is a 
dynamic procedure which balances the load and 
nonetheless, considers the task priorities in the 
holding up lines of the VMs. The given algorithm 
is an augmentation of the existing dynamic load 
balancing approach with the incorporation of the 

Krill herd behavior concept. The accompanying 
parameters such as speed and task cost, as well 
as the weight of each task, were used in the 
Krill herd optimization algorithm to enhance 
the performance. 

3.2.1 Speed

For a better usage of the cloud, the task speed needs 
to be expanded effectively. The mathematical 
formula for ascertaining task requests for speed 
is given as: 

β
αRL = ,

                                                  
(1)

where L is the task request for speed, αR is the 
turnaround time of undertaking the demand, and 
β is the holding up time of task request for ( R ). 

3.2.2 Task cost

The cost should be paid early to ensure the 
demand is met. The demand cost is determined 
using the equation: 

∧

∗= aC µ ,
                                                  

(2)

where C is the task cost, µ is data rate of task 
demands, and 

∧

a  is the holding up time of task demands. 

3.2.3 Weight

The amount of weight hinge on the speed and cost 
of demands. The weight is given by the equation: 

)( CLW +∗= α ,                                       (3)

where W is the weight, L is the task request 
speed, C is the task cost, α is a constant value 
∈[0, 1]. 

The pseudocode of the suggested Krill herd 
optimized load balancing algorithm, using speed, 
task cost and weight as parameters is shown in 
Figure 2. 
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Begin 
(i) Define population size (S) and iteration 
(Imax) 
(ii) Random initialization.
Set the iteration counter I = 1;
Initialize the population ( R ); 
Set the foraging speed Vf, the maximum 
diffusion speed Dmax, and the maximum 
induced speed Nmax. 
(iii) Fitness evaluation. 
Evaluate each krill individual according to 
speed ( L ), task cost ( C ), weight ( W ). 
(iv) While I <Imax do 
Sort the population/krill from best to worst. 
for i = 1: S (all krill) do 
Perform the following motion calculation. 
Movement induced by other krill individuals 
Foraging activity 
Physical diffusion 
Implement the genetic operators. 
Update the krill individual position in the 
search space. 
Evaluate each krill individual according to its 
position. 
End for i 
Sort the population/krill from best to worst 
and find the current best. 
Imax = I+1. 
End while 
(vi): Evaluate the krill best solution.
End

 Figure 2. Pseudocode of the suggested Krill 
herd algorithm

3.2.4 Description of Krill Herd- Load 
Balancing (KH-LB) Algorithm

Step 1

The algorithm commences with the haphazard 
initialization of the task demand size ( R ). 

Step 2

The fitness value is assessed from every Krill 
individual as indicated by the speed ( L ), task 
cost ( C  ), and weight (W ). 

Step 3

Next, the fundamental loop of the algorithm 
begins by first arranging the Krill from the best to 
the utmost noticeable bad individual. 
Step 4

The movement updates (induced movement, 
foraging, random diffusion) are computed for all 
the Krill using the following equations: 

a) Foraging motion update

The foraging update is computed thus: 
)()1( tFVtF xfxfx ωβ +=+                          (4)                                              

best
x

food
xx βββ += ,                                     (5)

where fV is the foraging speed, fω is the inertia 

weight, best
xβ is the finest solution of the xth Krill. 

b) Induced movement update

The induced movement shows the level 
of maintenance of the Krill herd, with the 
maintenance given to each Krill given by: 

)()1( max tMMtM xnxx ++=+ ωα             (6)

α α α
x x

total

x

tar et= + g                                              (7)                                                         

where maxM is the maximum instigated speed, 

nω is the inertia weight, total
xα is the local impact 

xth Krill has on its neighbors, α
x

tar etg is the best 
arrangement of the xth Krill. 

c) Physical diffusion update 

The third motion update emulates the physical 
dissemination by random action, and is given as: 

δ)1()1(
max

max i
iDtDx

−
=+ ,

                            
(8)

where maxD is the maximum diffusion speed, (δ ) 
is the random directional vector in [-1, 1]. 
Step 5

This step is centered on the three already specified 
movements using the distinctive parameter of 
motion (time) and the location of x th Krill in the 
interim to '' tt ∆+ which is determined by Equation 
9 and used to compute the position of each Krill.

K t t K t t
dK

dt
x x

x( ' ') ( ') '+ = +∆ ∆ ,
             

(9)

where 't∆ is a standout among the utmost note-
worthy constants and is better fine-tuned as far as 
the given real-world optimization. The location 
of an individual Krill in the tree is refreshed 
using the preceding equation to measure the 
objective function of the individual Krill towards 
the end of the algorithm where the best Krill 
(solution) re-occurred. 
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Step 6

Toward the end, the stopping criterion is used 
for the fulfillment of the predefined number of 
function assessments. When the stopping criterion 
is not met, sort the Krill population from the best 
to the least after that, compute the motion updates 
for all Krill and assess their positions. It restores 
the best solution (Krill) when the condition is met. 
These outcomes are the optimized load balance 
to the tasks. The whole process of the suggested 
Krill herd load balancing (KH-LB) is shown in 
Figure 3. 

Figure 3. Krill herd load balancing algorithm

The optimized load balancing achieved with the 
Krill herd algorithm overcame the complexities in 
load balancing. After load balancing, the modified 
dynamic energy aware cloudlet model (MDECM) 
solved the energy loss issues and provided a great 
service in resource allocations.

3.3 Modified Dynamic Energy Aware 
Cloudlet Model (MDCEM)

The allocation of resources in MCC using 
dynamic energy aware model was performed 

using the MDECM model. The model was built 
using parameters, such as the service rate and the 
energy of each task. In the cloud, the customers 
or their representatives submit service demands 
from anywhere around the world. It is essential 
to see that there is a contrast between cloud 
consumers and the clients of deployed services. 
The suggested MDECM aims to generate the 
minimum energy consumption under a particular 
time constraint and at a minimal cost. 

In DECM, for the most part, cloudlets are sent 
with dynamic programming and conceptualized 
as a dynamic cloudlet (DCL). Mobile cloud 
clients convey the service demands through 
the virtual machine (VM) connected to the 
client applications through which the demands 
productively progress to the adjoining cloudlet. 
The term ‘cloudlet’ alludes to a layer associating 
mobile devices with cloud servers in MCC. The 
suggested MDECM is considering two successful 
parameters, i.e., service rate and energy to 
enhance the service performance with limited 
energy involvement. The parameters employed 
in the MDECM are as follows: 

3.3.1 Service rate

This determines the average quantity of clients 
that are serviced at a time. The service rate is 
the volume of service system; should there be a 
chance that the number of customers to be served 
at a time is less than the average number of 
clients arriving, the holding up line will develop 
infinitely. The service rate relies on the cost and 
speed of every task. The task service rates are 
given as the cost ratio (cost essential by the tasks) 
to the data rate, estimated as follows: 

L
CSr = ,

                                                 
(10)

where rS is the service rate, C is the cost and L
is the speed (data rate). 

3.3.2 Energy consumption

The total energy expended for the achievement of 
a specific requested task can be determined using 
the formula: 

E

f

T
hk

E
−

= ,
                                             

(11)
 

where E is the expended energy, fk is the total 
task energy, h  is the task lost energy, and ET is 
the total energy. 
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The suggested MDECM algorithm is presented in 
Figure 4. The service rate and energy values are 
considered for a better service performance with 
reduced energy and resource allocation cost. The 
definition of the utilized notations in the suggested 
MDECM algorithm is presented below. 

x  Cloudlet node code which refers to the 
lining up of operations in the cloudlet nodes.

i  Choosing which strategy route to be utilized. 

iM  Method route which signifies the cloudlet 
route to be utilized. 

t  Particular latency or timing cost for 
every node.

T  Execution time unit which refers to the 
time required to convey services under demands. 

rS  Service rate.

E  Energy.

Tt  Task execution time. 

Input: Sr, E, Ti (x), Mi (x) and N (x)
Output: Minimum energy consumptions within 
a specific timing period and cost reduction.
1: for 1←x  to N (x)
2: for 1←m  to Mi (x)

3: for 1←Tt , to Ti (x)

4: ←rS L
C

5: ←E E

f

T
hk −

6: do the comparison and cancel the pair 
performing worse
7: end for
8: end for
9: end for

10: for 1←Tt  to Ti (x)
11: /*calculate each task service rate and 
energy consumption from N (1) to N (x)
12: do the comparison and cancel the pair 
performing worse */
13: end for
14: return all results

Figure 4. Modified dynamic energy aware cloudlet 
model (MDECM) algorithm

The MDECM algorithm comes about lessening 
the extra energy consumptions amid the wireless 
communications and continued for the total 
computation. Using the suggested dynamic 
programming approach on DCLs plans to select 
the most proficient communication between 
mobile devices and cloud servers, and by that 
resource allocation in a cloud data center, aim to 
give a high performance without concentrating on 
assigning VMs to limit energy consumption.

3.3.3 Resource allocation

Resource allocation is the process of doling out 
and scheduling accessible resources in the most 
effective and economical manner. The suggested 
optimized load balancing method accompanied 
by modified dynamic energy aware cloudlet 
model solves the issues in resources allocation 
and results in effective resource management. 
In MCC, resource management is imperative in 
sharing computing resources between customer 
demands. The effective management of accessible 
resources in the data-center plays a part for both 
consumer satisfaction and profit maximization. 
The suggested load balancing method with energy 
aware model helps cloud administrators in the 
determination of client’s priorities and effective 
allocation of network resources. The suggested 
resource allocation procedure is more efficient 
compared to the existing methods because, in 
those frameworks, there is no consideration of 
load balancing over energy reduction amongst 
the tasks. 

4. Results and Discussion

The use of the suggested Krill herd load balancing 
with viable energy cost aware resource allocation 
was executed on the JAVA platform. To assess the 
performance of the suggested model, different 
parameters such as load balancing, energy 
consumption, average turn round time, average 
waiting time, throughput, task energy consumption, 
execution time, and latency were measured and 
compared to the prevailing strategies. 

4.1 Execution time span

The execution time span is the time taken from the 
initialization of the first task and the end of the last 
task. It is determined using the equation: 

lastfirstt RRE −= ,                                            (12)
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where Et is the execution time span, Rfirst is the 
time of ending the last task, Rlast is the time of 
starting the first task. The comparative analysis 
graph of the execution time of the suggested Krill-
LB with the existing Krill herd, HBB-LB Round 
Robin algorithms is shown in Figure 5. 

Figure 5. Comparison of the execution time span of 
the suggested Krill-LB with the existing methods 

In Figure 5, the execution time span of the 
suggested krill-LB was compared to those of Krill 
herd, HBB-LB, and Round Robin algorithms. 
The comparison clearly demonstrates that the 
suggested Krill-LB requires lesser execution time 
span compared to the existing techniques. 

4.2 Energy consumption

The total amount of energy utilized by the 
methodology in data transfer is termed ‘energy 
consumption’. The performance of the suggested 
MDECM was compared with the existing DECM 
which performs analogously to the expected 
framework. The correlation analysis of the 
projected MDECM with the DECM is shown in 
Figure 6. 

Figure 6: Comparison analysis of the suggested 
MDECM with DECM for energy consumption

The comparison analysis graph in Figure 6 
demonstrates that the projected MDECM requires 
less energy compared to the DECM for an 
increasing number of data centers.

4.3 Throughput 

The total sum of tasks prepared by specific server 
is defined as “throughput”, which is measured by 
bit/second. Throughput is an important factor for 
reliability and system performance assessments. 
It is determined using the formula:

s

t

t
sdT ∗

= ,
                                                   

(13)

where T is the throughput, td is the number of 

delivered task data, s is the size of data, st is the 
aggregate task simulation time. The comparison 
of the throughput of the projected Krill-LB, Krill 
herd, HBB-LB and Round Robin algorithms is 
presented in Figure 7. 

Figure 7. Comparison of the throughput of Krill-LB 
with the existing algorithms 

The comparison graph in Figure 7 demonstrates 
that the suggested Krill-LB performed better 
than Krill herd, Round Robin, and Krill herd 
algorithms in terms of the throughput. The 
throughput of Krill-LB was higher than those of 
the benchmarked algorithms.

4.4 Average turn round time

In MCC, turnaround time is the aggregate time 
between the submission of a task for execution and 
the arrival of the outcome to the user. The average 
turnaround time is calculated by the equation: 
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Acavg ttT −= ,
                                                   

(14)

where avgT is the average turnaround time of tasks, 
ct is the tasks’ completion time, At is the tasks’ 

arrival time. The comparison of the suggested 
Krill-LB with Krill herd, HBB-LB, and Round 
Robin algorithms in terms of the average turn 
round time is shown in Figure 8. 

Figure 8. Comparison of Krill-LB with the existing 
methods in terms of the average turn round time

In Figure 8, the average turnaround time of 
Krill-LB was compared to the Krill herd, 
HBB-LB, and Round Robin algorithms. The 
results showed that the suggested Krill-LB had 
lesser average turn round time compared to the 
benchmarked algorithms. 

4.5 Average waiting time

The average time frame between a task request 
and its execution is termed the average waiting 
time. The average waiting time is calculated using 
the equation: 

burstavgwait tTT −=
,                                           

(15)

where waitT is the average waiting time, avgT is 
the average turnaround time, burstt  is the burst 
time that implies the extent of time the processor 
utilizes before it is in no way further ready. The 
comparison of the suggested krill-LB with the 
existing algorithms in terms of the average waiting 
time is presented in Figure 9. 

Figure 9. Comparison of the suggested Krill-LB with 
existing methods in terms of the average waiting time

The comparison graph in Figure 9 demonstrates 
that the suggested Krill-LB has a lesser waiting 
time compared to the benchmarked algorithms. 
Having a lesser waiting time implies the suggested 
algorithm operates more rapidly than the 
benchmarked algorithms. 

4.6 Task energy consumption

Energy consumption is defined as the quantity of 
energy utilized by the strategy in data transfer. The 
task energy consumption stands as the quantity of 
energy utilized to finish every task provided. The 
comparison analysis of the suggested MDECM 
with DECM is presented in Figure 10. 

Figure 10. Comparison of the suggested MDECM 
with DECM for task energy consumption

The comparison graph in Figure 10 demonstrates 
that the suggested MDECM needs lesser energy 
consumption for task execution compared to DECM.
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4.7 Load balancing

Load balancing is the load in each service 
measured by using standard deviation. Load 
balancing is calculated using the formula: 

N
ll
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n
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b

∑ =
−

= 1
2)(

,
                                    

(16)

where bL  is the load balancing, N is the number 
of services, il  is the number of task loading in 
service i  and l  is the average load of completed 
services. The comparison study of the suggested 
Krill-LB with the existing algorithms is shown in 
Figure 11. 

Figure 11. Comparison of the suggested Krill-LB 
with existing algorithms in terms of load balancing 

In Figure 11, the load balancing performance of 
the suggested Krill-LB was compared to that of 
some existing algorithms. The results showed that 
the suggested Krill-LB stands at per with some of 
the algorithms. 

4.8 Latency

Latency is the overall time of finishing a task, 
accompanied by the delay. This should be low for 
an effective strategy in the execution process. The 
latency of tasks is calculated using the equation:

DEL t += ,                             (17)

where L is the latency, tE is the assessed 
finishing time of tasks, and D is the delay of 

task completion. The comparison analysis of the 
projected Krill-LB with the existing algorithms in 
load balancing is shown in Figure 12. 

Figure 12. Comparison of the suggested Krill-LB 
with the existing algorithms in terms of latency

In Figure 12, the latency of the projected Krill-
LB was compared to that of some existing 
algorithms and the results showed the suggested 
Krill-LB to have a lesser latency compared to 
benchmarked algorithms. 

5. Conclusion

In the suggested energy-cost aware and load 
balancing procedure, the broker policy has been 
optimized using the Krill herd optimization 
algorithm named Krill-LB. The optimized 
parameter of the broker policy was forwarded 
to the Modified Dynamic Energy-aware 
Cloudlet-based Mobile cloud computing model 
(MDECM) strategy. Finally, the energy cost of 
the mechanism was calculated for improved 
load balancing and aimed at the minimal energy 
requirement for task processing. The use of 
MDECM can enhance the performance of the 
method compared to the existing strategies. 
Additionally, it lessened the computational 
complication through enhancing the computing 
ability of the processing features. The use of the 
suggested algorithm minimized several issues 
such as energy consumption, average turn 
round time, average waiting time, execution 
time, latency, load balancing, task energy 
and throughput which demonstrates a better 
performance of the framework.
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