
ISSN: 1220-1766 eISSN: 1841-429X 413

ICI Bucharest © Copyright 2012-2017. All rights reserved

1. Introduction

Mobile cloud computing (MCC) is characterized as
the augmentation of cloud computing with another
ad-hoc infrastructure for mobile gadgets [7]. MCC
is a promising framework that brings effective
cloud computing into a versatile processing
condition, in which mobile devices interface with
the internet via a wireless network, and afterward,
associate with the remote cloud [18]. MCC at its
easiest, alludes to an infrastructure where data
storage and processing occur exteriorly to mobile
gadgets [10]. This is a rising cloud benefit model
which is succeeding the pattern to spread out the
cloud to the brink of systems [28]. In addition, it
encourages the building of smart mobile gadgets
with improved cloud accessibility [13]. This is an
internet-based generation where mobile devices
are loaded with many applications. The context
is distinctively contrasting with mobile computing
since in MCC, gadgets run cloud-centered web
applications whereas mobile computing runs
with apps [27]. With the fast growth of mobile
applications accompanied by cloud computing,
MCC as a promising technology aimed at
mobile services is drawing more attention [22].
The primary components of MCC include the
migration of computationally intensive tasks

A Krill Herd Behaviour Inspired Load Balancing of
Tasks in Cloud Computing

Raed Abdulkareem HASAN*, Muamer N MOHAMMED

Faculty of computer system and software engineering,
University Malaysia Pahang (UMP)
Kuantan-26300, Pahang, Malaysia
e-mail: raed.isc.sa@gmail.com (*Corresponding author)
e-mail: muamer@ump.edu.my

Abstract: A developing trend in the IT environment is mobile cloud computing (MCC) with colossal
infrastructural and resource requirements. In the cloud computing environment, load balancing - a way of
distributing workloads across numerous computing resources, is a vital aspect. A proficient load balancing
guarantees an effective resource usage through the supply of network resources based on the user demands. It
can also organize the network clients using the fitting planning criteria. This paper sets forth an advanced load
balancing and energy/cost aware technique for a demand-based network resource allocation in cloud computing.
The load balancing process in the proposed strategy utilizes a Krill load balancer (Krill LB) which is expected
to achieve a well-balanced load over virtual machines. The aim of using the Krill LB as the load balancer is to
increase the throughput of the network as much as possible. The speed, task cost, and weight of the tasks were
first determined, after which, the Krill herd optimization algorithm was for the load balancing based on the
measured parameters. Furthermore, a modified dynamic energy-aware cloudlet-based mobile cloud computing
model (MDECM) was introduced for energy cost awareness in load balancing based on the service rate and
energy of the mobile users. The proposed work was aimed at optimizing resource allocation in MCC in an
energy-efficient manner. The performance of the suggested Krill-LB was benchmarked against that of Honey
Bee Behavior Load Balancing (HBB-LB), Kill Herd, and Round Robin algorithms.
Keywords: Mobile cloud computing, Resource allocation, Optimization, Load balancing, Energy cost aware.

or applications to servers in cloud domain in
order to execute them, and after that, recover the
outcome of the execution from these servers [8].
It utilizes communication technology to share
information and assets and incorporates location-
aware technologies, mobile access to IT, and
energy sparing technology specifically designed
for mobile devices [15]. As of late, mobile
applications have been noticeably copious with
different classes, such as entertainment, health,
games, business, social networking, travel, and
news [21][5][24].

In the cloud, the load assigned to every node in
the network is similarly distributed with an even
quantity of resources over time. This enhances the
scheme performance by moving the workloads
among various nodes [4][26]. The primary goal is
to expedite the implementation of applications on
resources whose workload changes at the runtime
in an unpredictable way. These are generally
discussed in homogeneous conditions such as
grids. Fundamentally, there are two ways of load
balancing procedures: (i) Static and (ii) dynamic
[3]. The load balancing plan and a migration policy
are aimed at virtual machine (VM) clustering to
brilliantly choose a VM from an over-burdened

Studies in Informatics and Control, 26(4) 413-424, December 2017

https://doi.org/10.24846/v26i4y201705

http://www.sic.ici.ro

414 Raed Abdulkareem Hasan, Muamer N Mohammed

resource and transfer it elsewhere where the load
is less [25]. A load-balancing heuristic mechanism
ensures the offloading of resources to the cloud,
with the aim that the balance between the mobile
device and cloud is augmented [14]. Load
balancing in cloud ought to be dispersed, flexible
and extensible. Albeit, many works have been
done in various aspects of a distributed scheme
on the issue of load balancing [2]. Load balancing,
along with high resource usage, is accomplished
by getting all the physical resources used, and
after that, initializes the VM movement based on
a pre-determined approach [20][1].

In cloud computing, load balancing or resource
control is a major challenge. Load balancing is a
procedure of workload distribution over various
PCs or different resources over the system link
to accomplish an ideal resource use, expand
throughput, reduce response time, and keep away
from over-burden [6]. To take a shot at load
balancing, conventional algorithms like First
Agent-Based Dynamic Load Balancing in Cloud
Computing (ABDLB) [11], Load Balancing Ant
Colony Optimization (LBACO) [16], First Come
First Serve (FCFS), Round Robin (R), Random
Allocation (R), Shortest Job First (SJF) and
Longest Job First (LJF) are not adequate, and the
meta-heuristic algorithms such as Evolutionary
Algorithms and Swarm Intelligent Algorithms
have been investigated [12][23]. The algorithm
presented in this study is an efficient load balancing
technique believed to be suitable for application
in a cloud computing environment. This study
contributes to the existing body of knowledge on
load balancing in the following ways:

•	 Developing a Krill Herd behavior-inspired
algorithm for an effective scheduling and
balancing of non-preemptive independent
tasks in cloud computing environments.

•	 Surveying the merits and demerits of the
existing load balancing algorithms.

•	 Correlating the suggested Krill-LB algorithm
with actual foraging behavior of Krill Herd
using a clear flow diagram of the behavioral
control structures of Krill herd and Krill-LB.

•	 Performing a systematic and analytical
study with mathematical evidence of the
performance of the proposed algorithm in a
cloud computing environment.

•	 Benchmarking the performance of the
proposed algorithm with that of the existing
load balancing algorithms.

The current paper is organized as follows:
Section 1 presents the study background and

the problem to be addressed, while Section 2
presents a review of the related studies, followed
by a discussion of the strengths and weaknesses
of the existing protocols. Section 3 introduces
the proposed algorithm, the experimental
steps, algorithm pseudocode, diagrams and
mathematical equations, while Section 4 discusses
the results of the experimental studies which have
been compared to the existing load balancing
algorithms. The last section concludes the study.

2. Related Works

Yanmin Gong et al. [9] have studied the privacy
issues in the ad-hoc mobile cloud computing
and suggested a structure that can ensure area
privacy while assigning works to mobile devices.
Their mechanism centered on differential privacy
along with geocast. In addition, it enables mobile
devices to accord their resources to the ad-hoc
mobile cloud that is deprived of leaking their
location details. They created analytical models
and task allocation methodologies that balance
privacy, utility and framework overhead in an ad-
hoc mobile cloud. They additionally performed
several experiments based on real-world datasets,
and the outcomes demonstrated that this structure
can secure the location privacy of mobile gadgets
while furnishing compelling administrations with
low framework overhead.

Kezhi Wang et al. [29] in C-RAN had suggested a
joint energy minimization, together with resource
allocation accompanied by MCC below the time
restriction of the provided undertakings. They
initially evaluated the energy and time model
of the computation and communication. At that
point, they have formulated the joint energy
minimization into a non-convex optimization,
accompanied by the limitation of transmitting
power, computation capacity, a task executing time
and also front haul information rates. They non-
convex optimization was afterward, redeveloped
into an identical convex issue in light of weighted
minimum mean square error (WMMSE). In
C-RAN accompanied by mobile cloud, an
iterative algorithm was at last assigned to manage
joint resource allocation. The simulation results
affirmed that the suggested energy minimization
and resource allotment solution can enhance the
framework performance and save energy.

Changsheng You et al. [30] suggested a resource
allotment aimed at a multiuser MECO framework

 415

ICI Bucharest © Copyright 2012-2017. All rights reserved

A Krill Herd Behaviour Inspired Load Balancing of Tasks in Cloud Computing

based on time-division multiple access (TDMA)
accompanied by orthogonal frequency-division
multiple access (OFDMA). To begin with, the
ideal resource allocation intended for the TDMA
MECO framework with infinite or finite cloud
computation capacity was framed as a convex
optimization issue for reducing the weighted
totality mobile energy consumption under the
limitation of computation latency. The ideal
strategy was demonstrated to require a threshold-
based structure with regard to an inferred
offloading priority function that provides priorities
for clients as indicated by their channel profits
along with local computing energy consumption.
Accordingly, clients with needs higher or below
a given threshold separately perform a complete
and least offloading. In addition, a sub-optimal
resource-allocation algorithm meant for the cloud
with limited capacity was suggested to lessen the
multifaceted nature of computation for calculating
the threshold. Subsequently, they considered that
the OFDMA MECO framework, aimed at an ideal
resource allotment as a mixed-integer issue.

Yanchen Liu et al. [19] suggested an Adaptive
Multi-Resource Allocation, aimed at cloudlet-
based MCC scheme. The suggested multi-
resource allocation plan improves the mobile
cloud service quality in terms of the framework
throughput and service latency. They formulated
the resource allocation model as a semi-Markov
decision procedure below the average cost norm
and additionally tackled the optimization issue
using linear programming techniques. An ideal
resource allocation guiding principle has been
ascertained through maximizing the long-standing
compensate while meeting the framework
necessities of the demand blocking probability
and service time latency. From the simulation
outcome, it was demonstrated that the framework
adaptively balanced the allocation policy on how
much resources to be assigned and whether to
utilize the distant cloud in line with the traffic of
requested mobile services and the accessibility
of resources in the framework. Their algorithm
outperformed the greedy admission control on a
broad range of environment.

Hongbin Liang et al. [17] suggested a service
decision-making system meant for interdomain
service exchange to adjust the computation loads
among different cloud domains. Their framework
concentrates on augmenting the prizes for both the
cloud framework and the clients by limiting the

extent of service dismissals that debase the client
fulfillment level fundamentally. They figured
the service entreaty decision-making procedure
as a semi-Markov decision method. The ideal
service transfer decisions were achieved by jointly
considering the framework incomes and costs.
Our system is an extensive simulation which
demonstrated that the suggested decision-making
procedure enhanced the framework outcomes and
lessened service disturbances compared to the
insatiable approach [6]. Finally, the calculation of
energy-cost aware for an improved load balancing
was performed and the demand aimed at the most
minimal energy was done at cloudlet mediator.

3. Krill Load Balancing and Dynamic
Energy-Aware in Mobile Cloud
Computing

This paper suggested an optimized load balancing
along with a modified dynamic energy aware
cloudlet model in resource allocation. The Krill
herd optimization algorithm was employed
to augment load balancing; centered on the
successful parameters such as speed, task cost,
and weight. After the load balancing, the modified
dynamic energy-aware cloudlet-based mobile
cloud computing model (MDECM) was shown
to reduce the service rate and energy of mobile
devices, thereby achieving the intended energy
cost aware and an effective resource allocation.
The block diagram of the suggested framework
is shown in Figure 1.

Figure 1. Block diagram of the suggested system

http://www.sic.ici.ro

416 Raed Abdulkareem Hasan, Muamer N Mohammed

3.1 Service allocator

Initially, the task demands from all the
mobile customers were directed to the cloud
domain. The task demands were first collected
from all the clients at a remote site signified
as { }nrrrrR ,....,, 321= , where R is the
arrangement of the task demands from the
mobile clients.

The task demands were gathered from the
users at each time by the service allocator
who considers both the tasks and the service.
The service allocator designates the service
for each demand. In the suggested work,
an optimized load balancing, together with
a modified DECM were used for effective
resource allocation. These are further presented
in the following subsections.

3.2 Krill herd-inspired load balancing
(KH-LB)

In MCC, load balancing is employed for an
optimized resource usage, maximize throughput,
lessen response time, and evade over-burden of
any single resource. Load balancing enhances
the dissemination of workloads over many
computing resources. In clouds, load balancing
is a separate task that takes place in the VM as an
imperative part of task scheduling. The load must
be balanced at any time some VMs are laden to
achieve an optimal machine use. VMs are under-
stocked with tasks for processing. To reduce the
issue of energy loss during load balancing, the
proposed work utilized a Krill herd optimized
load adjusting technique. Load balancing
procedures solve the issue of load irregularity
amongst VMs and are effective in decreasing the
influence of span and response time.

The Krill herd load balancing (KH-LB) is a
dynamic procedure which balances the load and
nonetheless, considers the task priorities in the
holding up lines of the VMs. The given algorithm
is an augmentation of the existing dynamic load
balancing approach with the incorporation of the

Krill herd behavior concept. The accompanying
parameters such as speed and task cost, as well
as the weight of each task, were used in the
Krill herd optimization algorithm to enhance
the performance.

3.2.1 Speed

For a better usage of the cloud, the task speed needs
to be expanded effectively. The mathematical
formula for ascertaining task requests for speed
is given as:

β
αRL = ,

(1)

where L is the task request for speed, αR is the
turnaround time of undertaking the demand, and
β is the holding up time of task request for (R).

3.2.2 Task cost

The cost should be paid early to ensure the
demand is met. The demand cost is determined
using the equation:

∧

∗= aC µ ,

(2)

where C is the task cost, µ is data rate of task
demands, and

∧

a is the holding up time of task demands.

3.2.3 Weight

The amount of weight hinge on the speed and cost
of demands. The weight is given by the equation:

)(CLW +∗= α , (3)

where W is the weight, L is the task request
speed, C is the task cost, α is a constant value
∈[0, 1].

The pseudocode of the suggested Krill herd
optimized load balancing algorithm, using speed,
task cost and weight as parameters is shown in
Figure 2.

 417

ICI Bucharest © Copyright 2012-2017. All rights reserved

A Krill Herd Behaviour Inspired Load Balancing of Tasks in Cloud Computing

Begin
(i) Define population size (S) and iteration
(Imax)
(ii) Random initialization.
Set the iteration counter I = 1;
Initialize the population (R);
Set the foraging speed Vf, the maximum
diffusion speed Dmax, and the maximum
induced speed Nmax.
(iii) Fitness evaluation.
Evaluate each krill individual according to
speed (L), task cost (C), weight (W).
(iv) While I <Imax do
Sort the population/krill from best to worst.
for i = 1: S (all krill) do
Perform the following motion calculation.
Movement induced by other krill individuals
Foraging activity
Physical diffusion
Implement the genetic operators.
Update the krill individual position in the
search space.
Evaluate each krill individual according to its
position.
End for i
Sort the population/krill from best to worst
and find the current best.
Imax = I+1.
End while
(vi): Evaluate the krill best solution.
End

 Figure 2. Pseudocode of the suggested Krill
herd algorithm

3.2.4 Description of Krill Herd- Load
Balancing (KH-LB) Algorithm

Step 1

The algorithm commences with the haphazard
initialization of the task demand size (R).

Step 2

The fitness value is assessed from every Krill
individual as indicated by the speed (L), task
cost (C), and weight (W).

Step 3

Next, the fundamental loop of the algorithm
begins by first arranging the Krill from the best to
the utmost noticeable bad individual.
Step 4

The movement updates (induced movement,
foraging, random diffusion) are computed for all
the Krill using the following equations:

a) Foraging motion update

The foraging update is computed thus:
)()1(tFVtF xfxfx ωβ +=+ (4)

best
x

food
xx βββ += , (5)

where fV is the foraging speed, fω is the inertia

weight, best
xβ is the finest solution of the xth Krill.

b) Induced movement update

The induced movement shows the level
of maintenance of the Krill herd, with the
maintenance given to each Krill given by:

)()1(max tMMtM xnxx ++=+ ωα (6)

α α α
x x

total

x

tar et= + g (7)

where maxM is the maximum instigated speed,

nω is the inertia weight, total
xα is the local impact

xth Krill has on its neighbors, α
x

tar etg is the best
arrangement of the xth Krill.

c) Physical diffusion update

The third motion update emulates the physical
dissemination by random action, and is given as:

δ)1()1(
max

max i
iDtDx

−
=+ ,

(8)

where maxD is the maximum diffusion speed, (δ)
is the random directional vector in [-1, 1].
Step 5

This step is centered on the three already specified
movements using the distinctive parameter of
motion (time) and the location of x th Krill in the
interim to '' tt ∆+ which is determined by Equation
9 and used to compute the position of each Krill.

K t t K t t
dK

dt
x x

x(' ') (') '+ = +∆ ∆ ,

(9)

where 't∆ is a standout among the utmost note-
worthy constants and is better fine-tuned as far as
the given real-world optimization. The location
of an individual Krill in the tree is refreshed
using the preceding equation to measure the
objective function of the individual Krill towards
the end of the algorithm where the best Krill
(solution) re-occurred.

http://www.sic.ici.ro

418 Raed Abdulkareem Hasan, Muamer N Mohammed

Step 6

Toward the end, the stopping criterion is used
for the fulfillment of the predefined number of
function assessments. When the stopping criterion
is not met, sort the Krill population from the best
to the least after that, compute the motion updates
for all Krill and assess their positions. It restores
the best solution (Krill) when the condition is met.
These outcomes are the optimized load balance
to the tasks. The whole process of the suggested
Krill herd load balancing (KH-LB) is shown in
Figure 3.

Figure 3. Krill herd load balancing algorithm

The optimized load balancing achieved with the
Krill herd algorithm overcame the complexities in
load balancing. After load balancing, the modified
dynamic energy aware cloudlet model (MDECM)
solved the energy loss issues and provided a great
service in resource allocations.

3.3 Modified Dynamic Energy Aware
Cloudlet Model (MDCEM)

The allocation of resources in MCC using
dynamic energy aware model was performed

using the MDECM model. The model was built
using parameters, such as the service rate and the
energy of each task. In the cloud, the customers
or their representatives submit service demands
from anywhere around the world. It is essential
to see that there is a contrast between cloud
consumers and the clients of deployed services.
The suggested MDECM aims to generate the
minimum energy consumption under a particular
time constraint and at a minimal cost.

In DECM, for the most part, cloudlets are sent
with dynamic programming and conceptualized
as a dynamic cloudlet (DCL). Mobile cloud
clients convey the service demands through
the virtual machine (VM) connected to the
client applications through which the demands
productively progress to the adjoining cloudlet.
The term ‘cloudlet’ alludes to a layer associating
mobile devices with cloud servers in MCC. The
suggested MDECM is considering two successful
parameters, i.e., service rate and energy to
enhance the service performance with limited
energy involvement. The parameters employed
in the MDECM are as follows:

3.3.1 Service rate

This determines the average quantity of clients
that are serviced at a time. The service rate is
the volume of service system; should there be a
chance that the number of customers to be served
at a time is less than the average number of
clients arriving, the holding up line will develop
infinitely. The service rate relies on the cost and
speed of every task. The task service rates are
given as the cost ratio (cost essential by the tasks)
to the data rate, estimated as follows:

L
CSr = ,

(10)

where rS is the service rate, C is the cost and L
is the speed (data rate).

3.3.2 Energy consumption

The total energy expended for the achievement of
a specific requested task can be determined using
the formula:

E

f

T
hk

E
−

= ,

(11)

where E is the expended energy, fk is the total
task energy, h is the task lost energy, and ET is
the total energy.

 419

ICI Bucharest © Copyright 2012-2017. All rights reserved

A Krill Herd Behaviour Inspired Load Balancing of Tasks in Cloud Computing

The suggested MDECM algorithm is presented in
Figure 4. The service rate and energy values are
considered for a better service performance with
reduced energy and resource allocation cost. The
definition of the utilized notations in the suggested
MDECM algorithm is presented below.

x Cloudlet node code which refers to the
lining up of operations in the cloudlet nodes.

i Choosing which strategy route to be utilized.

iM Method route which signifies the cloudlet
route to be utilized.

t Particular latency or timing cost for
every node.

T Execution time unit which refers to the
time required to convey services under demands.

rS Service rate.

E Energy.

Tt Task execution time.

Input: Sr, E, Ti (x), Mi (x) and N (x)
Output: Minimum energy consumptions within
a specific timing period and cost reduction.
1: for 1←x to N (x)
2: for 1←m to Mi (x)

3: for 1←Tt , to Ti (x)

4: ←rS L
C

5: ←E E

f

T
hk −

6: do the comparison and cancel the pair
performing worse
7: end for
8: end for
9: end for

10: for 1←Tt to Ti (x)
11: /*calculate each task service rate and
energy consumption from N (1) to N (x)
12: do the comparison and cancel the pair
performing worse */
13: end for
14: return all results

Figure 4. Modified dynamic energy aware cloudlet
model (MDECM) algorithm

The MDECM algorithm comes about lessening
the extra energy consumptions amid the wireless
communications and continued for the total
computation. Using the suggested dynamic
programming approach on DCLs plans to select
the most proficient communication between
mobile devices and cloud servers, and by that
resource allocation in a cloud data center, aim to
give a high performance without concentrating on
assigning VMs to limit energy consumption.

3.3.3 Resource allocation

Resource allocation is the process of doling out
and scheduling accessible resources in the most
effective and economical manner. The suggested
optimized load balancing method accompanied
by modified dynamic energy aware cloudlet
model solves the issues in resources allocation
and results in effective resource management.
In MCC, resource management is imperative in
sharing computing resources between customer
demands. The effective management of accessible
resources in the data-center plays a part for both
consumer satisfaction and profit maximization.
The suggested load balancing method with energy
aware model helps cloud administrators in the
determination of client’s priorities and effective
allocation of network resources. The suggested
resource allocation procedure is more efficient
compared to the existing methods because, in
those frameworks, there is no consideration of
load balancing over energy reduction amongst
the tasks.

4. Results and Discussion

The use of the suggested Krill herd load balancing
with viable energy cost aware resource allocation
was executed on the JAVA platform. To assess the
performance of the suggested model, different
parameters such as load balancing, energy
consumption, average turn round time, average
waiting time, throughput, task energy consumption,
execution time, and latency were measured and
compared to the prevailing strategies.

4.1 Execution time span

The execution time span is the time taken from the
initialization of the first task and the end of the last
task. It is determined using the equation:

lastfirstt RRE −= , (12)

http://www.sic.ici.ro

420 Raed Abdulkareem Hasan, Muamer N Mohammed

where Et is the execution time span, Rfirst is the
time of ending the last task, Rlast is the time of
starting the first task. The comparative analysis
graph of the execution time of the suggested Krill-
LB with the existing Krill herd, HBB-LB Round
Robin algorithms is shown in Figure 5.

Figure 5. Comparison of the execution time span of
the suggested Krill-LB with the existing methods

In Figure 5, the execution time span of the
suggested krill-LB was compared to those of Krill
herd, HBB-LB, and Round Robin algorithms.
The comparison clearly demonstrates that the
suggested Krill-LB requires lesser execution time
span compared to the existing techniques.

4.2 Energy consumption

The total amount of energy utilized by the
methodology in data transfer is termed ‘energy
consumption’. The performance of the suggested
MDECM was compared with the existing DECM
which performs analogously to the expected
framework. The correlation analysis of the
projected MDECM with the DECM is shown in
Figure 6.

Figure 6: Comparison analysis of the suggested
MDECM with DECM for energy consumption

The comparison analysis graph in Figure 6
demonstrates that the projected MDECM requires
less energy compared to the DECM for an
increasing number of data centers.

4.3 Throughput

The total sum of tasks prepared by specific server
is defined as “throughput”, which is measured by
bit/second. Throughput is an important factor for
reliability and system performance assessments.
It is determined using the formula:

s

t

t
sdT ∗

= ,

(13)

where T is the throughput, td is the number of

delivered task data, s is the size of data, st is the
aggregate task simulation time. The comparison
of the throughput of the projected Krill-LB, Krill
herd, HBB-LB and Round Robin algorithms is
presented in Figure 7.

Figure 7. Comparison of the throughput of Krill-LB
with the existing algorithms

The comparison graph in Figure 7 demonstrates
that the suggested Krill-LB performed better
than Krill herd, Round Robin, and Krill herd
algorithms in terms of the throughput. The
throughput of Krill-LB was higher than those of
the benchmarked algorithms.

4.4 Average turn round time

In MCC, turnaround time is the aggregate time
between the submission of a task for execution and
the arrival of the outcome to the user. The average
turnaround time is calculated by the equation:

 421

ICI Bucharest © Copyright 2012-2017. All rights reserved

A Krill Herd Behaviour Inspired Load Balancing of Tasks in Cloud Computing

Acavg ttT −= ,

(14)

where avgT is the average turnaround time of tasks,
ct is the tasks’ completion time, At is the tasks’

arrival time. The comparison of the suggested
Krill-LB with Krill herd, HBB-LB, and Round
Robin algorithms in terms of the average turn
round time is shown in Figure 8.

Figure 8. Comparison of Krill-LB with the existing
methods in terms of the average turn round time

In Figure 8, the average turnaround time of
Krill-LB was compared to the Krill herd,
HBB-LB, and Round Robin algorithms. The
results showed that the suggested Krill-LB had
lesser average turn round time compared to the
benchmarked algorithms.

4.5 Average waiting time

The average time frame between a task request
and its execution is termed the average waiting
time. The average waiting time is calculated using
the equation:

burstavgwait tTT −=
,

(15)

where waitT is the average waiting time, avgT is
the average turnaround time, burstt is the burst
time that implies the extent of time the processor
utilizes before it is in no way further ready. The
comparison of the suggested krill-LB with the
existing algorithms in terms of the average waiting
time is presented in Figure 9.

Figure 9. Comparison of the suggested Krill-LB with
existing methods in terms of the average waiting time

The comparison graph in Figure 9 demonstrates
that the suggested Krill-LB has a lesser waiting
time compared to the benchmarked algorithms.
Having a lesser waiting time implies the suggested
algorithm operates more rapidly than the
benchmarked algorithms.

4.6 Task energy consumption

Energy consumption is defined as the quantity of
energy utilized by the strategy in data transfer. The
task energy consumption stands as the quantity of
energy utilized to finish every task provided. The
comparison analysis of the suggested MDECM
with DECM is presented in Figure 10.

Figure 10. Comparison of the suggested MDECM
with DECM for task energy consumption

The comparison graph in Figure 10 demonstrates
that the suggested MDECM needs lesser energy
consumption for task execution compared to DECM.

http://www.sic.ici.ro

422 Raed Abdulkareem Hasan, Muamer N Mohammed

4.7 Load balancing

Load balancing is the load in each service
measured by using standard deviation. Load
balancing is calculated using the formula:

N
ll

L
n

i i
b

∑ =
−

= 1
2)(

,

(16)

where bL is the load balancing, N is the number
of services, il is the number of task loading in
service i and l is the average load of completed
services. The comparison study of the suggested
Krill-LB with the existing algorithms is shown in
Figure 11.

Figure 11. Comparison of the suggested Krill-LB
with existing algorithms in terms of load balancing

In Figure 11, the load balancing performance of
the suggested Krill-LB was compared to that of
some existing algorithms. The results showed that
the suggested Krill-LB stands at per with some of
the algorithms.

4.8 Latency

Latency is the overall time of finishing a task,
accompanied by the delay. This should be low for
an effective strategy in the execution process. The
latency of tasks is calculated using the equation:

DEL t += , (17)

where L is the latency, tE is the assessed
finishing time of tasks, and D is the delay of

task completion. The comparison analysis of the
projected Krill-LB with the existing algorithms in
load balancing is shown in Figure 12.

Figure 12. Comparison of the suggested Krill-LB
with the existing algorithms in terms of latency

In Figure 12, the latency of the projected Krill-
LB was compared to that of some existing
algorithms and the results showed the suggested
Krill-LB to have a lesser latency compared to
benchmarked algorithms.

5. Conclusion

In the suggested energy-cost aware and load
balancing procedure, the broker policy has been
optimized using the Krill herd optimization
algorithm named Krill-LB. The optimized
parameter of the broker policy was forwarded
to the Modified Dynamic Energy-aware
Cloudlet-based Mobile cloud computing model
(MDECM) strategy. Finally, the energy cost of
the mechanism was calculated for improved
load balancing and aimed at the minimal energy
requirement for task processing. The use of
MDECM can enhance the performance of the
method compared to the existing strategies.
Additionally, it lessened the computational
complication through enhancing the computing
ability of the processing features. The use of the
suggested algorithm minimized several issues
such as energy consumption, average turn
round time, average waiting time, execution
time, latency, load balancing, task energy
and throughput which demonstrates a better
performance of the framework.

 423

ICI Bucharest © Copyright 2012-2017. All rights reserved

A Krill Herd Behaviour Inspired Load Balancing of Tasks in Cloud Computing

REFERENCES
1. Banerjee, S. & Hecker, J. P. (2017). A Multi-

Agent System Approach to Load-Balancing
and Resource Allocation for Distributed
Computing. In First Complex Systems Digital
Campus World E-Conference 2015, Springer.

2. Chen, S.-L., Chen Y.-Y. & Kuo, S.-H. (2016).
CLB: A novel load balancing architecture
and algorithm for cloud services, Computers
& Electrical Engineering.

3. Cojoacă, E. Ș. D., Popescu, M. A.-M. &
Ambăruș, G. C. (2017). Cloud Computing
Technology to Assist Government in Decision
Making Process, Studies in Informatics and
Control, 26(2), 249-258.

4. Farrag, A. A. S., Mahmoud, S.A. & El Sayed,
M. (2015). Intelligent cloud algorithms for
load balancing problems: A survey. In 2015
IEEE Seventh International Conference
on Intelligent Computing and Information
Systems (ICICIS). IEEE.

5. Fernando, N., Loke, S.W. & Rahayu, W.
(2013). Mobile cloud computing: A survey,
Future generation computer systems, 29(1),
84-106.

6. Gai, K. et al. (2016). Dynamic energy-aware
cloudlet-based mobile cloud computing
model for green computing, Journal of
Network and Computer Applications, 59,
46-54.

7. Gao, J. et al. (2013). Mobile cloud computing
research-issues, challenges, and needs. In
2013 IEEE 7th International Symposium
on Service-Oriented System Engineering
(SOSE). IEEE.

8. Gill, Q.K. & Kaur, K. (2016). A computation
offloading scheme for performance
enhancement of smart mobile devices
for mobile cloud computing. In IEEE
International Conference on Next Generation
Intelligent Systems (ICNGIS).

9. Gong, Y. et al. (2015). Protecting location
privacy for task allocation in ad hoc mobile
cloud computing, IEEE Transactions on
Emerging Topics in Computing.

10. Gope, P. & Das, A. K. (2017). Robust
anonymous mutual authentication scheme for
n-times ubiquitous mobile cloud computing
services, IEEE Internet of Things Journal.

11. Grover, J. & Katiyar, S. (2013). Agent based
dynamic load balancing in Cloud Computing.
In 2013 International Conference on Human
Computer Interactions (ICHCI). IEEE.

12. Hasan, R. A. K. et al. (2017). A
comprehensive study: ACO for Facility
Layout Problem. In 2017 16th RoEduNet
Conference: Networking in Education and
Research.

13. Kaliappan, M., Augustine, S. & Paramasivan,
B. (2016). Enhancing energy efficiency and
load balancing in mobile ad hoc network
using dynamic genetic algorithms, Journal
of Network and Computer Applications, 73,
35-43.

14. Krishna, P. V. (2013). Honey bee behavior
inspired load balancing of tasks in cloud
computing environments, Applied Soft
Computing, 13(5), 2292-2303.

15. Li, J. et al. (2017). Computation Partitioning
for Mobile Cloud Computing in a Big
Data Environment, IEEE Transactions on
Industrial Informatics, 13(4), 2009-2018.

16. Li, K. et al. (2011). Cloud task scheduling
based on load balancing ant colony
optimization. In 2011 Sixth Annual
Chinagrid Conference (ChinaGrid). IEEE.

17. Liang, H. et al. (2012). An SMDP-based
service model for interdomain resource
allocation in mobile cloud networks, IEEE
transactions on vehicular technology, 61(5),
2222-2232.

18. Liu, Y. & Lee, M. J. (2015). An adaptive
resource allocation algorithm for partitioned
services in mobile cloud computing. In
2015 IEEE Symposium on Service-Oriented
System Engineering (SOSE). IEEE.

19. Liu, Y., Lee, M. J. & Zheng Y. (2016).
Adaptive multi-resource allocation for
cloudlet-based mobile cloud computing
system, IEEE Transactions on Mobile
Computing, 15(10), 2398-2410.

20. Malekloo, M. (2015). Multi-objective ACO
resource consolidation in cloud computing
environment. École de technologie supérieure.

21. Merezeanu, D., Vasilescu, G. & Dobrescu,
R. (2016). Context-aware Control Platform
for Sensor Network Integration in IoT and
Cloud, Studies in Informatics and Control,
25(4), 489-498.

22. Milani, A. S. & Navimipour, N. J. (2016).
Load balancing mechanisms and techniques
in the cloud environments: Systematic
literature review and future trends, Journal
of Network and Computer Applications.

http://www.sic.ici.ro

424 Raed Abdulkareem Hasan, Muamer N Mohammed

23. Mohammed, M. A. & Hasan, R. A. K. (2017).
Particle Swarm Optimization for facility
layout problems FLP – A comprehensive
study. In 2017 IEEE 13th International
Conference on Intelligent Computer
Communication and Processing.

24. Mohammed, M. N. & Hammood, O. A.
(2017). Hybrid LTE-VANETs Based Optimal
Radio Access Selection. In Proceedings of
the 2nd International Conference of Reliable
Information and Communication Technology
(IRICT), Recent Trends in Information and
Communication Technology. Springer.

25. Naha, R. K. & Othman M. (2016). Cost-
aware service brokering and performance
sentient load balancing algorithms in the
cloud, Journal of Network and Computer
Applications, 75, 47-57.

26. Rashidi, S. & Sharifian, S. (2017). A
hybrid heuristic queue based algorithm for

task assignment in mobile cloud, Future
Generation Computer Systems, 68, 331-345.

27. Sarrab, M. & Bourdoucen, H. (2015).
Mobile Cloud Computing: Security Issues
and Considerations, Journal of Advances in
Information Technology, 6(4).

28. Sharkh, M. A. & Shami, A. (2017). An
evergreen cloud: Optimizing energy
efficiency in heterogeneous cloud computing
architectures, Vehicular Communications.

29. Wang, K., Yang, K. & Magurawalage C.
(2016). Joint energy minimization and resource
allocation in C-RAN with mobile cloud, IEEE
Transactions on Cloud Computing.

30. You, C. et al. (2017). Energy-efficient resource
allocation for mobile-edge computation
offloading, IEEE Transactions on Wireless
Communications, 16(3), 1397-1411.

