EFFECT OF OPERATING CONDITIONS ON CHARACTERIZATION AND STABILIZATION OF CYCLODEXTRIN GLYCOSYLTRANSFERASE (CGTASE)

NUR ‘IZZATY HAZERA BT NAZAR

BACHELOR OF CHEMICAL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
EFFECT OF OPERATING CONDITIONS ON CHARACTERIZATION AND STABILIZATION OF CYCLODEXTRIN GLYCOSYLTRANSFERASE (CGTASE)

NUR ‘IZZATY HAZERA BT NAZAR

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

DISEMBER 2016
UNIVERSI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPY RIGHT

Author’s Full Name: NUR ‘IZZATY HAZERA BT NAZAR
Date of Birth: 14 JULAI 1992
Title: EFFECT OF OPERATING CONDITIONS ON CHARACTERIZATION AND STABILIZATION OF CYCLODEXTRIN GLYCOSYLTRANSFERASE
Academic Session: SEM 1 2016/2017

I declared that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restriction information as specified by the organization where research was done)*
☒ OPEN ACCESS I agree that my thesis to be published as online open access (Full text)

I acknowledge that University Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.
2. The Library of University Malaysia Pahang has right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified By:

(Student’s Signature) (Supervisor’s Signature)

920714-14-5650 DR ROHAIDA CHE MAN
New IC /Passport Number Name of Supervisor
Date: 15/12/2016 Date: 15/12/2016

NOTES: *If the thesis is CONFIDENTIAL or RESTRICTICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction
SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature :
Name of main supervisor : DR ROHAIDA BT CHE MAN
Position : LECTURER
Date : 15 DECEMBER 2016
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : NUR ‘IZZATY HAZERA BT NAZAR
ID Number : KE13002
Date : 15 DECEMBER 2016
Dedicated to whom that believed in me for the knowledge and encouragement.
ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor, Dr. Rohaida Bt Che Man. You have been a brilliant mentor for me. I would like to thank you for your never ending support during my tenure as research student under your guidance, for giving insightful comments and suggestions of which without it, my research path would be a difficult one. Your advice on my research has been valuable.

A special thanks to my family. Words cannot express how grateful I am to my mother, father, brother and sisters for the love and support throughout these years. Your prayer for me was what sustained me thus far. I’m very much indebted for all the times that you have spent on my behalf.

I would also like express appreciation to Natasya bt Abd Jamil, who always be my support and willing to teach and guide me in laboratory works. I’m very much grateful for your support from the beginning till the end of my research.

I am also indebted to the Ministry of Higher Education and Universiti Malaysia Pahang for funding my study.

I would also like to thank all of my friends who supported me in writing, and motivate me to strive towards my goal. I am sincerely grateful to the staffs of Chemical Engineering and Natural Resources Faculty who helped me in many ways and made my stay in UMP pleasant and unforgettable.
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION II
STUDENT’S DECLARATION III
ACKNOWLEDGEMENT V
ABSTRACT VI
ABSTRAK VII
TABLE OF CONTENTS VIII
LIST OF TABLES X
LIST OF FIGURES XI
LIST OF SYMBOLS XII
LIST OF ABBREVIATIONS XIII
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF SYMBOLS xii

CHAPTER 1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Motivation 2
1.3 Problem Statement 3
1.4 Objectives 3
1.5 Scopes of Study 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 Introduction 4
2.2 Cyclodextrin Glycosyltransferase (CGTase) 4
2.3 Sources of Cyclodextrin Glycosyltransferase (CGTase) 5
2.4 Cyclodextrin (CD) 7
2.5 Application of Cyclodextrin (CD) in Industry 8
2.6 Characterization of CGTase 9
 2.6.1 Effect of Starch concentration 9
 2.6.2 Effect of pH 10
2.7 Stabilization of CGTase 10
 2.7.1 Effect of pH 10
 2.7.2 Effect of Temperature 11
CHAPTER 3 METHODOLOGY 13
3.1 Introduction 13
3.2 Materials 14
 3.2.1 Chemicals and reagents 14
3.3 CGTase Activity Assay 14
3.4 Characterization of CGTase 14
 3.4.1 Effect of Starch concentration 15
 3.4.2 Effect of pH 15
3.5 Stabilization of CGTase 15
 3.5.1 Effect of pH 15
 3.5.2 Effect of Temperature 16

CHAPTER 4 RESULTS AND DISCUSSION 17
4.1 Introduction 17
4.2 Characterization of CGTase 17
 4.2.1 Effect of Starch concentration 17
 4.2.2 Effect of pH 18
4.3 Stabilization of CGTase 20
 4.3.1 Effect of pH 20
 4.3.2 Effect of temperature 21

CHAPTER 5 CONCLUSION AND RECOMMENDATION 23
5.1 Conclusion 23
5.2 Recommendation 23
REFERENCES 24
APPENDICES 30
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Producers and operating conditions of CGTase</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Effect of pH on the stabilization of CGTase</td>
<td>11</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Effect of temperature on stabilization of CGTase</td>
<td>12</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Figure 2.1: Reaction catalyzed by CGTase; (A) cyclization, (B) coupling, (C) disproportional and (D) hydrolysis</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Figure 2.2: Chemical structure of three main types of CD</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Figure 3.1: Flow chart for characterization and stabilization of CGTase</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Figure 4.1: Optimum starch concentration of CGTase</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Figure 4.2: Optimum pH of CGTase</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Figure 4.3: pH stability of CGTase</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Figure 4.4: Thermal stability of CGTase</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Figure A-2: α-CD standard curve for the calculation of CGTase activity</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\begin{itemize}
\item \textit{g} \quad \text{gram}
\item \textit{L} \quad \text{liter}
\item \textit{ml} \quad \text{milliliter}
\item \textit{w/v} \quad \text{weight solute per volume solution}
\item \textit{M} \quad \text{mol}
\end{itemize}
LIST OF ABBREVIATIONS

CGTase cyclodextrin glycosyltransferase
CD cyclodextrins
OD optical density
MW molecular weight