

RESEARCH ARTICLE Adv. Sci. Lett. 24(2), 1484-1487, 2018

1 Adv. Sci. Lett. Vol. 4, No. 2, 2016 1936-6612/2011/4/400/008 doi: 0.1166/asl.2018.10775

Copyright © 2018 American Scientific Publishers Advanced Science Letters

All rights reserved Vol. 24(2), 1484-1487, 2016

Printed in the United States of America

Optimization of Travelling Salesman Problem with

Precedence Constraint using Modified GA Encoding

M.F.F. Ab Rashid1*, M. Jusop1, N.M.Z. Nik Mohamed1 and F.R.M. Romlay1
1Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan, Malaysia

*Corresponding author. Tel.: +609-4246321; email: ffaisae@ump.edu.my

One of the challenges in combinatorial optimization is to optimize travelling salesman problem with precedence constraint

(TSPPC). The optimization algorithm to deal with this problem is continuously developed and improved to enhance its

performance. Genetic algorithm (GA) is one of popular algorithm used to optimize TSPPC. In this work, the Genetic

algorithm is improved by using a discrete encoding instead of continuous encoding. The numerical experimental results

indicated that the proposed algorithm able to search for optimal solution faster compared with original encoding.

Keywords: Travelling salesman problem, precedence constraint algorithm.

1. INTRODUCTION

Travelling salesman problem with precedence
constraint (TSPPC) involves finding an optimal route for
visiting a number of cities exactly once by following a set
of precedence constraint[1] . Previously, different
methods have been proposed for obtaining optimal
solution for the TSPPC. The methods used to solve
TSPPC are classified into exact and heuristic methods.
Exact methods like Branch-and-Bound, dynamic
programming and local search techniques always lead to
the optimal solution[2] . However, they usually take
sizeable time to solve the problem. Thus, it can only
handle smaller size problems[3] .

Heuristic methods such as neural network, Tabu
search and genetic algorithm (GA) were developed to find
the near-optimal solution for larger dimension problems
within a reasonable CPU time. However, these methods
do not guarantee an optimal solution[4] . [5] applied the
traditional GA to solve TSPPC. Later, they improved the
existing algorithm using the hybrid approach[3] . They
found that, the proposed algorithm generated better
solution for larger size problem compared to the

traditional GA.
However, it is computationally expensive to use

priority factor as chromosome because when a specific
string in chromosome is changed, the element inside the
sequence is randomly changing. This will increase the
number of generations to come out with optimal solution
because of the unpredictable changes of sequence when a
particular string in chromosome is changed [6] .

This paper presents an improved genetic algorithm to
solve the TSPPC with optimal sequence and less number
of generations. The proposed algorithm also will have
faster iteration time compare to the algorithm that was
proposed by [7] . The proposed algorithm directly used
sequence of solution as chromosome instead of priority
factor. However, by using sequence of solution as
chromosome, the chances of generating infeasible
chromosome is still exist. Therefore, the repair operator is
required in the proposed algorithm. In this case, the repair
operator is adopted from topological sort that was used
by[7] .

*Email Address: ffaisae@ump.edu.my

Adv. Sci. Lett. 24(2), 1484-1487, 2018 RESEARCH ARTICLE

2

2. DEVELOPMENT OF THE PROPOSED

ALGORITHM

An efficient genetic algorithm (GA) was introduced

by[7] as an improvement of traditional GA to solve

TSPPC with better efficiency. By introducing new

chromosome representation and crossover operator,

Moon’s algorithm had successfully generated better

solution for larger size problem. The proposed algorithm

is an extended study of Moon’s algorithm with the

purpose of generating optimal solution with less number

of generations and faster iteration time.

The main idea of the proposed algorithm is to

directly use sequence of solution instead of priority factor

as chromosome. In GA, the chromosome selection to

represent a particular problem determines performance of

the algorithm. A good GA chromosome design should

reduce or eliminate redundant variables from the

algorithm[8] . Redundancy refers to a solution that being

able to be represented by a variable, but a few variables

appear in the algorithm multiple times. Multiple

representations of the same solution increase the search

space and slow the search.

Therefore in Moon’s algorithm, the multiple

representations are associated with two different set of

variables that exist in algorithm. The variables refer to the

priority factor as chromosome and sequence of solution as

the output in this problem. By using different variables

for chromosome and sequence of task, the changes in

sequence of task cannot be predicted when a specific

string in chromosome changed.

2.1 INITIALIZATION

For initial population, random permutation

method is used to generate chromosomes. The integer

from 1 to N, which is the number of node, is generated in

random sequence. For example, Figure 1 shows a

problem that consists of six nodes.

Fig. 1. An example of precedence diagram

The initial chromosome is generated randomly using

integer 1 to 6 (e.g. [4, 2, 6, 1, 5, 3]). The number of

chromosome depends on the size of population, P. These

sequences (chromosomes) normally did not satisfy the

precedence constraint. Therefore, the topological sort

method with some modification on the selection method

is used. Besides that, total number of generation also is

included.

2.2 REPRESENTATION

The chromosome for the proposed algorithm consists
of integer from 1 to N, which N is number of nodes to be
visited. The number of string represents the task number.
The representation stage consists of three main steps. The
first step is identifying the available nodes. The available
nodes means that the node without predecessor. For
example, in Figure 1, the available nodes are node
number 1 and 2.

Then, the second step in representation is selecting
task in earlier position of chromosome. By referring to the
available node (1 and 2), the node 2 is firstly found in
initial chromosome [4, 2, 6, 1, 5, 3] compare to node 1.
Therefore, node 2 is selected as the first string in
sequence of task, seq. The third step in representation is
removing edge from selected node. Since node 2 was
selected, it is removed from the precedence diagram.
Therefore the new available nodes are node number 1 and
5. By repeating similar steps in representation, the
feasible sequence that is generated from chromosome [4,
2, 6, 1, 5, 3] is [2, 1, 5, 3, 4, 6].

2.3 EVALUATION AND SELECTION

Evaluation and selection process of chromosome is
closely related to the genetic algorithms. The evaluation
and selection of good chromosomes will ensure better
generated chromosome for the next generation. The
chromosome is evaluated using a fitness value through a
fitness function. In this case, the fitness function is given
by equation (1).
Minimize (1)

i, j = 1,2,…,n and i ≠ j

In Equation 1, cij represents the traveling distance or
traveling time from node i to node j according to a
specific problem. The objective in Equation 1 is to
minimize the total traveling distance or the total traveling
time. The binary variable xij is constraint to ensure each
node is entered and exited exactly once.
The roulette wheel selection is used to select parent
chromosomes to be re-generated for the next chromosome.
A selection chance for chromosome is depending on
fitness value. For minimization problem, the chromosome
with smaller fitness value has better chance to be selected
and re-generated.

2.4 GENERATION OF OFFSPRING

The purpose of re-generating chromosomes is to
generate new chromosome which is known as offspring.
There are two operators for generating offspring which
are crossover and mutation. In the proposed algorithm,
two successive chromosomes are selected as parents by
using roulette wheel selection method. Then, Moon

1

2

3

4

5

6

RESEARCH ARTICLE Adv. Sci. Lett. 24(2), 1484-1487, 2018

3

crossover is applied to generate two new children. Moon
crossover is a crossover operator that was introduced by7 .

Mutation procedure which called swap mutation is
then applied to the chromosome. For mutation, two
strings in chromosome are selected at random. Then, the
position of the selected string is swap to create new
chromosome. The purpose of swapping string at random
is to avoid local optimum. The procedure of the proposed
algorithm is presented as follows:

Procedure: Proposed Algorithm

Begin

Initialization

set random permutation of sequence (x1, x2,…, xN) with N

strings, population size P and total number of generation;

 generation ← 0, population ← 0, chromosome ← 0

while generation < total number of generation do

while population < population size do

 while chromosome < length of chromosome, N do

Representation

check and store available node without incoming edge in

available set;

select and store task in earlier position of sequence in seq;

remove edge from selected task;

 end while

end while

Evaluation and Selection

 Evaluate fitness value;

Roulette wheel selection, select 2 chromosomes, Pa and Pb;

Generation of Offspring

 Moon crossover;

 Mutation;

End while

End procedure

3. NUMERICAL EXPERIMENTS

Three numerical experiments using different size of

problems were conducted to show the effectiveness of the

proposed algorithm. These problems were acquired

from[7] . In order to compare performance of the

proposed algorithm, Moon’s algorithm together with

traditional GA (also known as OX algorithm) were also

experimented.

The objective of these experiments was to find the

optimum sequence, which provide the fastest transition

time for all nodes. Parameters that were measured in these

experiments are:

Optimal solution

Number of generations to come out with optimal

solution

Iteration time to complete generations

Iteration time to generate optimal solution

Numerical experiments were performed on HP

Compaq with Pentium CORE i5 CPU, 2.6 Gigahertz

clock speed and 8 Gigabyte of RAM. The programming

language for all algorithms is MATLAB Version 7.8.0.

3.1 TEST PROBLEMS

The first experiment contains six nodes and six

precedence constraint as shown in Figure 2. All

parameters and data are available in Moon et.al (2002).

Figure 3 shows the transition time versus number of

generation for the first problem. According to the graph,

all algorithms achieved optimal solution, 39 seconds as

achieved by Moon et.al (2002).

Fig. 2. TSP with precedence constraint 7

The second problem deals with 20 vertices and 31

precedence constraints as shown in Figure 3. The details

data of this problem is acquired in[7] .

Fig. 3. TSPPC with 20 nodes and 31 precedence

constraint 7

The third problem which involves 40 tasks and 56

precedence constraints is also taken from[7] . The

transition time between operations are randomly

generated within 1 and 15 as proposed by[7] . The

precedence diagram for this problem is presented in

Figure 4.

Adv. Sci. Lett. 24(2), 1484-1487, 2018 RESEARCH ARTICLE

4

Fig. 4. TSPPC with 40 nodes and 56 precedence

constraint7

3.2 NUMERICAL RESULTS

The numerical experiment results are presented in

Table 1. Based on this table, the proposed algorithm

consistently obtained the best known solutions as

presented in[7] . However, the iteration time and time to

reach optimum solution is slightly improved compared

with Moon algorithm.

Table. 1. Numerical experiment results

P
ro

b
le

m
 N

o

N
o

 o
f

ta
sk

A
lg

o
ri

th
m

O
p

ti
m

u
m

tr
a

v
el

li
n

g
 t

im
e

(s
)

It
er

a
ti

o
n

 t
im

e
(s

)

It
er

a
ti

o
n

 t
im

e
to

o
p

ti
m

u
m

 (
s)

N
o

 o
f

g
en

er
a
ti

o
n

to
 o

p
ti

m
u

m

1 6

Moon 39 1.625 0.859 8

OX 39 2.718 1.437 4

Proposed 39 1.484 0.234 1

2 20

Moon 61 1090 896.1 413

OX 65 188.3 28.2 23

Proposed 61 222.4 82.47 170

3 40

Moon 187 30,962 21683 350

OX 196 1619 177 52

Proposed 187 490 1568 155

(a)

0 100 200 300 400 500
60

65

70

75

80

85

90

Generation

T
ra

ve
lin

g
tim

e
(s

)

OX

Moon's

Proposed

(b)

0 50 100 150 200 250 300 350 400 450 500
180

190

200

210

220

230

240

250

260

270

280

Generations

T
ra

n
s
it
io

n
 t

im
e
 (

s
)

Performance Graph

OX Algorithm

Moon's Algorithm

Proposed Algorithm

(c)

Fig. 5. Algorithms performance for the Problem 1(a),

Problem 2(b) and Problem 3(c)

Figure 5 show the convergence plot for the test

problems. The results show that for this particular

problem, the proposed algorithm generates optimal

solution with less number of generations compare to

Moon’s algorithm. Moon’s algorithm required longer time

to perform iterations. The results also indicate that the

proposed algorithm is able to produce optimal solution

with less generation and less time consuming for this

particular problem.

4. CONCLUSIONS

Numerical experiment results show that the

performance of the proposed algorithm is better than

Moon’s algorithm in terms of generating optimal solution

with less generation of populations. For all cases, the

numbers of generations to generate optimal solution are

reduced within 55.7% to 87.5%. The results also indicated

that the iteration time to generate optimal solution for the

5 10 15 20
38

39

40

41

42

43

44

45

Generation

T
ra

v
e
lli

n
g
 t

im
e

Moon's

OX

Proposed

RESEARCH ARTICLE Adv. Sci. Lett. 24(2), 1484-1487, 2018

5

proposed algorithm is smaller than iteration time for

Moon’s algorithm. The improvement percentage of CPU

iteration time is within 72.7% to 97.7%.

The numerical experiment results of traveling

salesman problem with precedence constraint confirmed

that the proposed algorithm is more efficient than Moon’s

algorithm for generating the optimal solution with less

generation of populations.

ACKNOWLEDGMENTS

The authors would like to acknowledge the

Malaysian Ministry of Higher Education and Universiti

Malaysia Pahang for supporting this research under

RDU140103 grant.

REFERENCES

[1] H.-J. Böckenhauer, T. Mömke, and M. Steinová,

"Improved approximations for TSP with simple

precedence constraints," Journal of Discrete

Algorithms, vol. 21, pp. 32-40, 2013.

[2] J.-F. Cordeau, M. Dell’Amico, and M. Iori, "Branch-

and-cut for the pickup and delivery traveling salesman

problem with FIFO loading," Computers &

Operations Research, vol. 37, pp. 970-980, 2010.

[3] Y. Yun, H. Chung, and C. Moon, "Hybrid genetic

algorithm approach for precedence-constrained

sequencing problem," Computers & Industrial

Engineering, vol. 65, pp. 137-147, 2013.

[4] K. M. Curtin, G. Voicu, M. T. Rice, and A. Stefanidis,

"A comparative analysis of traveling salesman

solutions from geographic information systems,"

Transactions in GIS, vol. 18, pp. 286-301, 2014.

[5] Y. Yun and C. Moon, "Genetic algorithm approach for

precedence-constrained sequencing problems,"

Journal of Intelligent Manufacturing, vol. 22, pp. 379-

388, 2011.

[6] S. Mizuno, S. Iwamoto, and N. Yamaki, "Proposal of

an Effective Computation Environment for the

Traveling Salesman Problem Using Cloud

Computing," Journal of Advanced Mechanical Design,

Systems, and Manufacturing, vol. 6, pp. 703-714, 2012.

[7] C. Moon, J. Kim, G. Choi, and Y. Seo, "An efficient

genetic algorithm for the traveling salesman problem

with precedence constraints," European Journal of

Operational Research, vol. 140, pp. 606-617, 2002.

[8] M. Albayrak and N. Allahverdi, "Development a new

mutation operator to solve the Traveling Salesman

Problem by aid of Genetic Algorithms," Expert

Systems with Applications, vol. 38, pp. 1313-1320,

2011.

Received: 22 September 2016. Accepted: 18 October 2016

