INVESTIGATING OF MECHANICAL PROPERTIES OF REINFORCED PLASTIC (FIBERGLASS)

MOHD AIMAN BIN MD JOHARI

A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2008

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering with Manufacturing.

Signature	:
Name of Supervisor	: MADAM SALWANI BINTI MOHD SALLEH
Position	: Supervisor
Date	:

Signature	:
Name of Panel	:
Position	:
Date	:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name: MOHD AIMAN BIN MD JOHARIID Number: ME 05049Date:

ACKNOWLEDGEMENTS

In the name of Allah, the most gracious, the most merciful.

First of all, I am very thankful to Allah S.W.T, for giving me strength and opportunity to finish my Final Year Project 2. With full of His merciful, now I am writing this final report of this project.

I would like to thanks my project supervisor, Madam Salwani Binti Mohd Salleh for her continuous encouragement and guidance throughout this whole project. She has share her full of knowledge and experiences within order me for me to complete the task. This project would not be able to be completed in time without her full guidance and willingness of sparing time with me.

I also want to express my appreciation to all lectures, and organizations that have directly of indirectly gave their help. Many special thanks to them for their excellent co-operation, inspiration, and supports during completing this project.

Last but not least, my special gratitude to my friends for their full support and willingness in solving all problems and tasks. They have given me valuable advices and tips during the preparation of this project. Thank you.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi

ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABREVIATIONS	xiii

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Project Background	2
1.3	Project Activities	2
1.4	Project Scopes	2
1.5	Project Statements	3
1.6	Project Flowchart	4
	1.6.1 Project Flow Chart For Semester 11.6.2 Project Flow Chart For Semester 2	4 5

CHAPTER 3 LITERATURE REVIEW

magita	~
mposites)
 Polymer Matrix Composites (PMC) Ceramic Matrix Components (CMC) 	7 7
	1Polymer Matrix Composites (PMC)2.Ceramic Matrix Components (CMC)

	2.2.3 Fiber Reinforcement for Ceramic Composites	8
	2.2.4 Metal Matrix Composites (MMC)	8
	2.2.5 Fiber Reinforcement for Metal Composites	9
2.3	Reinforced Plastics	10
2.4	Reinforcing Fibers	11
2.5	Classes of Fiberglass	12
2.6	Properties of Fiberglass	13
2.7	Matrix	16
	2.7.1 Resin	16
2.8	Experiments Method	18
	2.8.1 Tensile Test	18
	2.8.2 Impact Test	20

CHAPTER 3 METHODOLOGY

Introduction	22
Literature Review	22
Experiment	23
 3.2.1 Materials 3.2.2 Specimens Preparation 3.2.3 Preparation of Matrix Materials 3.2.4 Preparation of Laminates and Samples 3.2.5 Tensile Test 3.2.6 Impact Test 	23 23 24 24 25 26
Analysis Data	26
Report Writing and Submission of Documentations	28
	Literature Review Experiment 3.2.1 Materials 3.2.2 Specimens Preparation 3.2.3 Preparation of Matrix Materials 3.2.4 Preparation of Laminates and Samples 3.2.5 Tensile Test 3.2.6 Impact Test Analysis Data

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	29
4.2	Data	29
	4.2.1 Tensile Test	29
	4.2.2 Impact Test	41

CHAPTER 5 CONCLUSION

5.1	Conclusion	45
5.2	Recommendations	46
REFE	ERRENCES	47
APPENDICES		49

LIST OF TABLES

Table No.

Page

2.1	Fibers Used in Polymer Composites - Mechanical Properties	13
3.1	Table of fiber specification	24
3.2	Table of Data for Impact Test (Izod and Charpy test)	27
3.3	Table of Data for Impact Test (Laminates of 3 layers with 200/300/350 g resin used)	27
4.1	Result of tensile test (Fiberglass laminates of 3 layers with 200 g resin used)	31
4.2	Result of tensile test (Fiberglass laminates of 3 layers with 300 g resin used)	33
4.3	Result of tensile test (Fiberglass laminates of 3 layers with 350 g resin used)	35
4.4	Table of all average value in Tensile Test	37
4.5	Result of tensile test using steel as specimens	38
4.6	Result of Charpy Test (2 J of load)	42
4.7	Result of izod test (2.7 J of load)	44

LIST OF FIGURES

Figure No.

2.1	Graph of stress versus strain	17
2.2	A standard test specimen in tensile test	18
2.3	A typical stress strain graph obtained from a tension test	19
2.4	Impact test specimens; top one is on Charpy test and below is on Izod test	21
4.1	Sample condition (break) after given load	30
4.2	Graph of load versus displacement using fiberglass with 200 g resin	31
4.3	Graph of stress versus strain using fiberglass with 200 g resin	32
4.4	Graph of load versus displacement using fiberglass with 300 g resin	33
4.5	Graph of stress versus strain using fiberglass with 300 g resin	34
4.6	Graph of load versus displacement using fiberglass with 350 g resin	35
4.7	Graph of stress versus strain using fiberglass with 350 g resin	36
4.8	A piece of damaged fiber specimen (no necking occurred)	37
4.9	Graph of load versus displacement using steel as specimen	39
4.10	Graph of stress versus strain using steel as specimen	40
4.11	A specimen of steel that fracture	40
4.12	A sample tested on Charpy test	41
4.13	A sample tested on izod test	42

Page

LIST OF SYMBOLS

3	Engineering Strain
σ	Engineering Stress
l	InstantaneousLength
lo	Original Gage Length

LIST OF ABBREVIATIONS

FRP	Fiber-reint	forced	Plast	ic

- MMC Metal Matrix Composites
- CMC Ceramic Matrix Composites
- PMC Polymer Matrix Composites
- GRP Glass-reinforced Plastic
- UTM Ultimate Tensile Machine
- Y Yield Point/ Yield Stress
- UTS Ultimate Tensile Strength