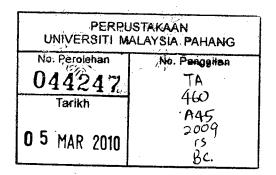
UNIVERSITI MALAYSIA PAHANG FACULTY OF MECHANICAL ENGINEERING

We certify that the project entitled "Finite Element Modelling of Limiting Dome High Sheet Metal Formability Test" is written by Mohammad Amir B. Hashim. We have examined the final copy of this project and in our opinion; it is fully adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering. We herewith recommend that it be accepted in partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering.

M

Signature

CHE NGELL Examiner


FINITE ELEMENT MODELLING OF LIMITING DOME HIGH SHEET METAL FORMABILITY TEST

MOHAMMAD AMIR BIN HASHIM

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature Shued Sulaiman

Name of Supervisor: Dr. Ahmad Syahrizan Sulaiman Position: Supervisor Date: November 2009

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature /

Name: Mohammad Amir B. Hashim ID Number: MA06026 Date: November 2009 I humbly dedicated this thesis to

my lovely father and late mom, Hashim B. Nordin and Miyen Bt Yasin all my dearest brothers, and all my dearest sisters,

who always trust me, love me and had been a great source of support and motivation.

ACKNOWLEDGEMENT

This thesis is the end of my long journey in obtaining my Bachelor Degree in Mechanical Engineering. I have been accompanied and supported by many people in this journey. It is a pleasant aspect that I have now the opportunity to express my gratitude for all of them.

First a very special thanks you to my supervisor, Dr. Ahmad Syahrizan for his great patient and efforts to explain things clearly. He provided encouragements and lots of good ideas in order for me to complete the testing and thesis writing period. I would have been lost without his guidance and support.

I would also like to thank all lecturers and who had help me directly or indirectly and shared their experiences with me. I am also indebted to the support of my family and friends. They accompanied me went through the toughest moment. A journey is easier when you travel together. Interdependence is certainly more valuable than independences.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	1
1.3	Project Objectives	2
1.4	Scopes Of Work	2

CHAPTER 2 LITERATURE REVIEW

2.1	Finite Element Analysis	3
	2.1.1 Advantages Of Finite Element Analysis	3
2.2	Sheet Metal	4
2.3	Sheet Metal Forming	5
2.4	Limiting Dome High	6
2.5	Mechanical Properties	9
·	 2.5.1 Stress 2.5.2 Strain 2.5.3 Modulus Elasticity 2.5.4 Poison's Ratio 2.5.5 Elasticity 2.5.6 Plasticity 	

2.6		1 Ductile Fracture Crateria ability	15
СНАР	TER 3	METHODOLOGY	
3.1	Projec	ct Flow Chart	19
3.2	Die D	Design Of Limiting Dome High	21
3.3	Finite	Element Method	21
3.4	3.3.2	Nodes and Elements Basic step in Finite Element Modelling p the model	21 22 22
3.5	3.4.2 3.4.3 3.4.4	First Design Second Design Third Design Best Design rating 2D Mesh	23 24 25 26 27
3.6	3.5.1 Mech	Global Element Size anical Event Simulation (MES)	29 29
3.7	Type	ofElement	30
3.8	3.7.2 3.7.3	Plane Stress Plane Strain Axissymetric stress analysis ent Parameters	30 30 30 31
3.9	3.8.2 3.8.3 3.8.4	Elastic Plastic Analysis Type Advanced 2D Element Parameters ial Properties	31 31 31 32 32
3.10	Bound	lary Condition	34
3.11		Applying Boundary Condition ming A Nonlinear Analysis	34 37
3.12	Prescr	ibed Displacement	38
3.13		Load Curve e to surface Contact	39 40

2.5.7 Yield Strength

2.5.8 Compressive Strength2.5.9 Stress-Strain Curve2.5.9 Stress-Strain Curve

2.5.10 True Stress and True Strain

ix

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Node 2262	41
4.2	Brass, Red	43
	4.2.1 Comparison Of Elastic Element Parameter And Plastic Element Parameter Of Brass, Red	45
4.3	Aluminium Alloy 5052-T4	46
	4.3.1 Comparison Of Elastic Element Parameter And Plastic Element Parameter Of Aluminium Alloy 5052-T4	48
4.4	Steel AISI 1010 Fully Annealed	49
	4.4.1 Comparison Of Elastic Element Parameter And Plastic Element Parameter Of Steel AISI 1010	51
4.5	Titanium, Ti	52
	4.5.1 Comparison Of Elastic Element Parameter And Plastic Element Parameter Of Steel AISI 1010	54
4.6	Elastic Graph Comparison	55
4.7	Plastic Graph Comparison	56
4.8	Equivalent Plastic Strain	57

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

REFERENCES		
5.2	Recommendation	61
5.1	Conclusion	60

APPENDICES

		63
A1	Gantt Chart For FYP1	63
A2	Gantt Chart For FYP2	64
B1	Brass, Red due to isotropic elastic element parameters	65
B2	Brass, Red due to plastic element parameters	66
B3	Aluminum due to isotropic elastic element parameters	67
B4	Aluminum due to plastic element parameters	68
B5	Steel AISI 1010 due to isotropic elastic element parameters	69
B6	Steel AISI 1010 due to plastic element parameters	70
B7	Titanium due to isotropic elastic element parameters	71
B8	Titanium due to plastic element parameters	72

LIST OF TABLES

Table No.Title		Page
2.1	Figure of Limiting Dome High Test sheet metal formability test actual.	18
3.1	Material Properties of Brass, Red	33
3.2	Material Properties of Aluminum 5052-T4	15
3.3	Material Properties of steel AISI 1010	26
3.4	Material Properties of Titanium, Ti	30
6.1	Brass, Red due to isotropic elastic element parameters	65
6.2	Brass, Red due to plastic element parameters	66
6.3	Aluminum due to isotropic elastic element parameters	67
6.4	Aluminum due to plastic element parameters	68
6.5	Steel AISI 1010 due to isotropic elastic element parameters	69
6.6	Steel AISI 1010 due to plastic element parameters	70
6.7	Titanium due to isotropic elastic element parameters	71
6.8	Titanium due to plastic element parameters	72

LIST OF FIGURES

Figure 1	No. Title	Page
2.1	One of Finite Element Analysis	4
2.2	Example dimension of sheet metal that will formed	5
2.3	Schematic Diagram of Limiting Dome High Test	10
2.4	Limiting Dome High Test overview	11
2.5	stress-strain diagram	15
3.1	The flow chart of simulation in Limiting Dome High test	20
3.2	Design of die in Auto CAD of Limiting Dome High	21
3.3	Figure of first design drawing	23
3.4	Figure where the fracture are happent at sheet metal	24
3.5	Drawing of second design	24
3.6	Drawing of sheet metal	25
3.7	Drawing of punch	26
3.8	Drawing of blank holder	26
3.9	Drawing of Upper Die	27
3.10	Full drawing of the die design	27
3.11	Figure of mesh size and mesh density	28
3.12	Figure of each part with mesh	28
3.13	Figure of boundary condition of sheet metal and its state	35
3.14	Figure of boundary condition of punch and its state	35
3.15	Figure of boundary condition of blank holder and its state	36
3.16	Figure of boundary condition upper die and its state	36
3.17	Figure of full boundary condition	37

3.18	Figure of prescribed displacement	38
3.19	Figure of Load curve for punch	39
3.20	Figure of Load curve for blank holder	39
3.21	Figure for contact pair	40
4.1	Node 2262 at sheet metal	41
4.2	Figure in Finite Element Analysis Of time step 0	42
4.3	Figure in Finite Element Analysis Of time step 100	42
4.4	Time Step vs. Displacement node 2262 in y direction for Brass, Red in elastic element parameter	43
4.5	Time Step vs. Displacement node 2262 in y direction for Brass, Red in plastic element parameter	44
4.6	Time Step vs. Displacement node 2262 in y direction for Brass, Red in both element parameters	45
4.7	Time Step vs. Displacement node 2262 in y direction for Aluminum 5052 in elastic element parameter	46
4.8	Time Step vs. Displacement node 2262 in y direction for Aluminum 5052 in plastic element parameter	47
4.9	Time Step vs. Displacement node 2262 in y direction for Aluminum 5052 in both element parameters	48
4.10	Time Step vs. Displacement node 2262 in y direction for steel AISI 1010 in elastic element parameter	49
4.11	Time Step vs. Displacement node 2262 in y direction for Steel AISI 1010 in plastic element parameter	50
4.12	Time Step vs. Displacement node 2262 in y direction for Steel AISI 1010 in both element parameters	51
4.13	Time Step vs. Displacement node 2262 in y direction for steel Titanium in elastic element parameter	52
4.14	Time Step vs. Displacement node 2262 in y direction for Titanium in plastic element parameter	53
4.15	Time Step vs. Displacement node 2262 in y direction for Titanium in both element parameters	54

xiv

4.16	Time Step vs. Displacement node 2262 in y direction for all material used in elastic element parameter	55
4.17	Time Step vs. Displacement node 2262 in y direction for all material used in plastic element parameter	56
4.18	Equivalent plastic strain maximum for Titanium (1.5585mm/mm)	57
4.19	Equivalent plastic strain maximum for Aluminum (1.4213mm/mm)	58
4.20	Equivalent plastic strain maximum for Brass (1.3858mm/mm)	58
4.21	Equivalent plastic strain maximum for steel (1.2173mm/mm)	59

LIST OF SYMBOLS

A	Cross Sectional Area
mm	Millimetre
S	Second
t	Thickness
.1	Length
W	Width
d	Diameter
x	Horizontal distance
У	Vertical distance
Ν	Newton
σ_y	Yield Stress
E	Modulus of Elasticity
σ	Stress
Е	Strain

. *"*

LIST OF ABBREVIATIONS

AISI	American Iron and Steel Institute
ASTM	American Society for Testing Materials
FE	Finite Element
FEA	Finite Element Analysis
FEM	Finite Element Model
LDH	Limiting Dome High test