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Abstract

The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In

addition to exploiting sine and cosine functions to perform local and global searches (hence

the name sine-cosine), the SCA introduces several random and adaptive parameters to

facilitate the search process. Although it shows promising results, the search process of the

SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability

and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we

propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-

cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability.

Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism)

to dynamically identify the best operation during runtime. Additionally, we integrate two new

operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of

local minima/maxima and enhance the solution diversity. To assess its performance, we

adopt the QLSCA for the combinatorial test suite minimization problem. Experimental

results reveal that the QLSCA is statistically superior with regard to test suite size reduction

compared to recent state-of-the-art strategies, including the original SCA, the particle

swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo

search strategy (CS) at the 95% confidence level. However, concerning the comparison

with discrete particle swarm optimization (DPSO), there is no significant difference in perfor-

mance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms

the DPSO in certain configurations at the 90% confidence level.

Introduction

An optimization problem relates to the process of finding the optimal values for the parame-

ters of a given system from all possible values with minimum or maximum profitability. In

past decades, many meta-heuristic algorithms have been proposed in the scientific literature
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(these include genetic algorithms [1], particle swarm optimization [2], simulated annealing

[3], and the bat algorithm [4]) to address such a problem. The sine-cosine algorithm (SCA) is a

new population-based meta-heuristic algorithm proposed by Mirjalili [5]. In addition to

exploiting the sine and cosine functions to perform a local and global search (hence the name

sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the

search process. Although it shows promising results, the balanced selection of exploration

(roaming the random search space on the global scale) and exploitation (exploiting the current

good solution in a local region) appears problematic.

Mathematically, sine and cosine are the same operator with a 90-degree phase shift. There-

fore, in some cases, the use of either sine or cosine could inadvertently promote similar solu-

tions. Furthermore, the search process is potentially vulnerable to local minima/maxima due

to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine

functions (from -1 to 1).

Motivated by these challenges, we propose a new hybrid Q-learning-based sine-cosine strat-

egy called the QLSCA. Hybridization can be the key to further enhancing the performance of

the original SCA. Within the QLSCA, we eliminate the switching probability. Instead, we rely

on the Q-learning algorithm (based on the penalty and reward mechanism [6]) to dynamically

identify the best operation during runtime. Additionally, we combine the QLSCA with two

new operations (Lévy flight motion and crossover) to facilitate jumping out of local minima/

maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA

for the combinatorial test suite minimization problem. Experimental results reveal that the

QLSCA exhibits competitive performance compared to the original SCA and other meta-heu-

ristic algorithms.

Our contributions can be summarized as follows:

• A new hybrid Q-learning sine-cosine based strategy called the Q-learning sine-cosine algo-

rithm (QLSCA) that permits the dynamic selection of local and global search operations

based on the penalty and reward mechanism within the framework of the Q-learning

algorithm.

• A hybrid of Lévy flight (originated in the cuckoo search algorithm [7]) and crossover (origi-

nated in genetic algorithms [1]) operations within the QLSCA.

• A comparison of the performance of the QLSCA and that of recent state-of-the-art strategies

(including the particle swarm test generator (PSTG) [8], DPSO [9], APSO [10], and CS [11])

for the t-way test minimization problem.

Preliminaries

Covering array notation

The generation (and minimization) of combinatorial test suites from both practical and theo-

retical perspectives is currently an active research area. Theoretically, the combinatorial test

suite depends on a well-known mathematical object called the covering array (CA). Originally,

the CA gained more attention as a practical alternative to the oldest mathematical object, the

orthogonal array (OA), which had been used for statistical experiments [12, 13].

An OAλ(N; t, k, v) is an N × k array, where for every N × t sub-array, each t − tuple occurs

exactly λ times, where λ = N/vt; t is the combination strength; k is the number of input func-

tions (k� t); and v is the number of levels associated with each input parameter of the soft-

ware-under-test (SUT) [14]. Practically, it is very hard to translate these firm rules except in

small systems with few input parameters and values. Therefore, there is no significant benefit

Hybrid Q-learning sine cosine strategy for combinatorial test suite minimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0195675 May 17, 2018 2 / 29

Generation. We thank MOHE for the contribution

and support, Grant number: RDU170103. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0195675


for medium- and large-scale SUT because it is very hard to generate OAs. In addition, based

on the rules mentioned above, it is not possible to represent the OA when each input parame-

ter has different levels.

To address the limitation of the OA, the CAwas introduced. A CAλ(N; t, k, v) is an N × k
array over (0, � � �, v − 1) such that every t − tuple is λ-covered and every N × v sub-array con-

tains all ordered subsets of size t of v values at least λ times, where the set of columns is B = {b0,

� � �, bv−1}� 0, � � �, k − 1 [15, 16]. In this case, each tuple appears at least once in the CA. In sum-

mary, any covering array CA(N; t, k, v) can also be expressed as CA(N; t, vk).
Variations in the number of component can be handled by a mixed covering array (MCA)

[17]. AnMCA(N; t, k, (v1, v2, � � �, vk)) is an N × k array on v values, where the rows of each N ×
t sub-array cover all t interactions of values from the t columns that occur at least once. For

more flexibility in the notation, the array can be represented by MCAðN; t; vk1
1 v

k2
2 � � � vkkÞ.

Motivating example

To illustrate the use of the CA for t − way testing, consider the hypothetical example of an

Acme Vegetarian Pizza Ordering System. Referring to Fig 1, the system offers four selections

of parameters: Pizza Size, Spicy, Extra Cheese, and Mayonnaise Topping. One parameter takes

three possible values (Pizza Size = {Large Pizza, Medium Pizza, and Personal Pizza}), while the

rest of the parameters take two possible values (Spicy = {True, False}, Extra Cheese = {True,

False}, and Mayonnaise Topping = {True, False}). Ideally, an all-exhaustive test combination

requires 3 × 2 × 2 × 2 = 24 combinations. In a real-life testing scenario, the number of parame-

ters and values can be enormous, resulting in a potentially large number tests. Given tight pro-

duction deadlines and limited resources, test engineers can resort to a t-wise sampling strategy

to minimize the test data for systematic testing. In the context of the Acme Vegetarian Pizza

Ordering System highlighted earlier, the mixed-strength CA representation for MCA(N; 2,

3123) can be seen in Fig 2 with 7 test cases (a reduction of 70.83% from the 24 exhaustive possi-

bilities). Table 1 highlights the corresponding test cases mapped from the given mixed-

strength covering arrays. Ideally, the selection of the previously mentioned (mixed) CA repre-

sentation depends on the product requirements and the creativity of the test engineers based

on the given testing.

Fig 1. Acme vegetarian pizza order system.

https://doi.org/10.1371/journal.pone.0195675.g001
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Mathematically, the t − way test generation problem can be expressed by:

f ðZÞ ¼ jfI in VIL : Z covers Igj ð1Þ

Subject to Z ¼ Z1;Z2; . . . ;Zi in P1; P2; . . . ; Pi ; i ¼ 1; 2; . . . ;N

where f(Z) is an objective function (or the fitness function); Z is the test case candidate, which

is the set of decision variables Zi; VIL is the set of non-covered interaction tuples(I); the vertical

bars j j represent the cardinality of the set and the objective value is the number of non-covered

interaction tuples covered by Z; Pi is the set of possible values for each decision variable, with

Pi = discrete decision variables (Zi(1) < Zi(2) < � � �< Zi(K)); N is the number of decision vari-

ables (here the parameters); and K is the number of possible values for the discrete variables.

Related work

As part of the general interest in search-based software engineering (SBSE) approaches [18],

much research attention has been given to the application of meta-heuristic search techniques

to address the combinatorial test generation problem. Meta-heuristic techniques have had a

big impact on the construction of t − way and variable-strength test suites, especially in terms

of the optimality of the test suite [19–23].

Meta-heuristic based strategies often start with a population of random solutions. Then,

one or more search operators are iteratively applied to the population to improve the overall

fitness (greedily covering the interaction combinations). While there are many variations, the

Fig 2. Mixed covering array construction MCA(N; 2, 3123) for Acme vegetarian pizza order system.

https://doi.org/10.1371/journal.pone.0195675.g002

Table 1. Mapping of mixed covering arrays to test cases.

MCA(N; 2, 3123)

Test ID Pizza Size Spicy Extra Cheese Mayonnaise Top

1 Medium Pizza False True False

2 Large Pizza True True True

3 Personal Pizza False False True

4 Medium Pizza True False False

5 Large Pizza False False False

6 Personal Pizza True True False

7 Medium Pizza True True True

https://doi.org/10.1371/journal.pone.0195675.t001
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main difference between meta-heuristic strategies is based on each search operator and how

exploration and exploitation are manipulated.

Cohen et al. [16, 24] developed a simulated annealing-based strategy for supporting the

construction of a uniform and variable-strength t − way test suite. A large random search

space is generated in the implementation. When the algorithm iterates, the strategy chooses

better test cases to construct the final test suite using the binary search process and a transfor-

mation equation. The search space is transformed from one state to another according to a

probability equation. The results of the study are mainly concerned with the interaction

strengths of two and three [24].

Chen et al. [25] implemented a t − way strategy based on ant colony optimization (ACO).

The strategy simulates the behaviour of natural ant colonies in finding paths from the colony

to the location of food. Each ant generates one candidate solution and walks through all paths

in this solution by probabilistically choosing individual values. When the ant reaches the end

of the last path, it returns and updates the initial candidate solution accordingly. This process

continues until the iteration is complete. The final test case is chosen according to the maxi-

mum coverage of the t-interaction. Unlike the SA, the final test suite is further optimized by a

merging algorithm that tries to merge the test cases.

Shiba et al. [26] adopted a genetic algorithm (GA) based on natural selection. Initially, the

GA begins with randomly created test cases called chromosomes. These chromosomes

undergo crossover and mutation until the termination criterion is met. In each cycle, the best

chromosomes are probabilistically selected and added to the final test suite.

Alsewari et al. [19] developed a t − way strategy based on the harmony search algorithm

(HSS). The HSS mimics the behaviour of musicians trying to compose good music either by

improvising on the best tune they remember or by random sampling. In doing so, the HSS

iteratively exploits the harmonic memory to store the best solution found through a number of

defined probabilistic improvisations within its local and global search processes. In each

improvisation, one test case is selected for the final test suite until all the required interactions

are covered. The notable feature of the HSS is that it supports constraints using the forbidden

tuple approach.

Ahmed et al. [11] adopted the cuckoo search algorithm (CS), which mimics the unique life-

style and aggressive reproduction strategy of the cuckoo. First, the CS generates random initial

eggs in host nests. Each egg in a nest represents a vector solution that represents a test case. In

each generation, two operations are performed. Initially, a new nest is generated (typically

through a Lévy flight) and compared with the existing nests. The new nest replaces the current

nest if it has a better objective function. Then, the CS adopts probabilistic elitism to maintain

the elite solutions for the next generation.

Particle swarm optimization (PSO) [2] is perhaps the most popular implementation of t −
way test suite generation. The PSO-based t − way strategy searches by mimicking the swarm

behaviour of flocking birds. In PSO, global and local searches are guided by the inertia weight

and social/cognitive parameters. Initially, a random swarm is created. Then, the PSO algo-

rithm iteratively selects a candidate solution within the swarm to be added to the final test

suite until all interaction tuples are covered (based on velocity and displacement transforma-

tion). Ahmed et al. developed early PSO-based strategies called the PSTG [8, 27] and APSO

[10]. APSO is an improvement on the PSTG integrated with adaptive tuning based on the

Mamdani fuzzy inference system [28, 29]. Wu et al. implemented discrete PSO [8] by substan-

tially modifying the displacement and velocity transformation used in PSO. The benchmark

results of DPSO [9] demonstrate its superior performance when compared with both the

PSTG and APSO.

Hybrid Q-learning sine cosine strategy for combinatorial test suite minimization
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Despite the significant number of proposed algorithms in this field, the adoption of new

meta-heuristic algorithms is most welcome. The no free lunch (NFL) theorem [30] suggests

that no single meta-heuristic algorithm can outperform others even when there is a slight

change in the problem of (t − way) configurations. Therefore, the NFL theorem allows

researchers to propose new algorithms or modify current ones to enhance the current solution.

In fact, the results could also be applied in other fields.

Hybrid integration with machine learning appears to be a viable approach to improving the

state-of-the-art meta-heuristic algorithms. Machine learning relates to the study of the funda-

mental laws that govern the computer learning process concerning the construction of systems

that can automatically learned from experience. Machine learning techniques can be classified

into three types: supervised, unsupervised, and reinforcement [31]. Supervised learning

involves learning a direct functional input-output mapping based on some set of training data

and being able to predict new data. Unlike supervised learning, unsupervised learning does

not require explicit training data. Specifically, unsupervised learning involves learning by

drawing inferences (e.g., clustering) from an input dataset. Reinforcement learning allows

mappings between states and actions to maximize reward signals using experimental discov-

ery. This type of learning differs from supervised learning in that it relies on a punishment and

reward mechanism and never corrects input-output pairs (even when dealing with suboptimal

responses).

Combinatorial test suite minimization is one of the crucial elements of an efficient test

design [32, 33]. This area is worth further exploration, especially when we can take advantage

of machine learning’s benefits. To be specific, our approach focuses on the hybridization of a

meta-heuristic algorithm with reinforcement learning based on the Q-learning algorithm [6].

The Q-learning algorithm is attractive due to its successful adoption in many prior works.

Ant-Q [34] is the first attempt by researchers to integrate a meta-heuristic algorithm (ACO)

with Q-learning. Although its integration with Q-learning is useful (e.g., it has been success-

fully adopted for the 2-dimensional cutting stock problem [35] and the nuclear reload problem

[36]), the approach appears too specific to ACO because pheromones and evaporation are

modelled as part of the Q-learning updates (as rewards and punishments). In a more recent

study, RLPSO [37], a PSO algorithm integrated with Q-learning, was successfully developed

(and adopted in a selected case study of a gear and pressure vessel design problem and stan-

dard benchmark functions). While it has merit, the approach is computationally intensive and

complex because each particle in the swarm must carry its own Q-metrics. Therefore, the

RLPSO approach is not sufficiently scalable for large-scale combinatorial problems requiring

large population sizes. In the current study, the swarm size is limited to 3.

By building on and complementing the work mentioned above, our work explores the

hybridization of the Q-learning algorithm with a recently developed meta-heuristic algorithm

called the SCA [5]. Unlike most meta-heuristic algorithms that mimic certain physical or natu-

ral phenomena, the equation transformation used in the SCA is solely based on the sine and

cosine operations. Therefore, the learning curve of the SCA is low. Although its exploitation is

commendable, the exploration of the SCA is strictly bounded due to the (adaptive) shrinking

magnitude of the sine and cosine functions’ multipliers during the search process. To address

the issues mentioned above, we propose a new algorithm, the QLSCA. Moreover, we augment

the QLSCA with two further operations (Lévy flight motion and crossover) to counterbalance

its exploration and exploitation. Then, we use the Q-learning algorithm (which is based on the

penalty and reward mechanism) to dynamically identify on the best operation (sine, cosine,

Lévy flight motion, or crossover) during runtime.

Hybrid Q-learning sine cosine strategy for combinatorial test suite minimization
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Overview of the SCA

The SCA is a population-based meta-heuristic algorithm [5]. As the name suggests, the SCA

exploits the sine and cosine functions to update its population’s positions. Each position is

treated as a vector. To be specific, the positions are updated is based on:

Xðtþ1Þ

i ¼ Xt
i þ r1 � sinðr2Þ � jr3Pti � X

t
i j; r4 < 0:5 ð2Þ

Xðtþ1Þ

i ¼ Xt
i þ r1 � cosðr2Þ � jr3P

t
i � X

t
i j; r4 � 0:5 ð3Þ

where Xt
i is the position of the current solution in the ith dimension and the tth iteration; r1, r2,

r3, and r4 are random numbers in [0, 1]; Pi is the position of the best destination point in the ith

dimension, and j j indicates the absolute value.

Due to its importance to the exploration and exploitation of the SCA, the four main param-

eters r1, r2, r3, and r4 require further elaboration. The parameter r1 dictates the radius of the

search circle (displacement size). It is also possible to adaptively and dynamically vary r1 dur-

ing the iteration process using:

ri ¼ M 1 �
t
T

� �
ð4Þ

where t is the current iteration; T is the maximum number of iterations; andM is a constant.

Due to the cyclic nature of sine and cosine, the parameter r2 defines whether the motion is

inward (the direction of exploitation when sine and cosine are negative) or outward (the direc-

tion of exploration when sine and cosine are positive), as can be seen in Fig 3. The parameter

r3 brings in the random weight from the best position to affect the overall displacement from

the current position. Finally, the parameter r4 equally switches between the sine and cosine

components.

To summarize, the general pseudo code for the SCA algorithm is given in Algorithm 1.

Fig 3. Effects of Sine and Cosine on search radius.

https://doi.org/10.1371/journal.pone.0195675.g003
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Algorithm 1: Pseudo Code for SCA Algorithm [5]

Input: the population X = {X1, X2, � � �, XD}, the constant magnitude M
Output: Xbest and the updated population X0 ¼ fX0

1
;X0

2
; � � � ;X0Ng

1 Initialize random population X
2 while (stopping criteria not met) do
3 Set initial r1 using Eq (3)
4 for iteration = 1 till max iteration do
5 for population count = 1 to population size do
6 Evaluate each population of X by the objective function
7 Update the best solution obtained so far, Pti ¼ Xbest
8 Randomly generate the value of r2, r3, r4 between [0, 1]
9 Update the position of X using Eq (2) or Eq (3)
10 Update r1 adaptively using Eq (4)
11 end
12 end
13 end
14 Return the updated population, X and the best result (Xbest)

The proposed strategy

The proposed QLSCA-based strategy integrates Q-learning with the sine and cosine opera-

tions, Lévy flight motion and crossover. Lévy flight and crossover were selected for two rea-

sons. Firstly, the Lévy flight operator is a well-known global search operator [38]. Activating

the Lévy flight operator can potentially propel the search process from a local optimum. Sec-

ondly, the crossover can be considered both global and local searching [1]. For instance, 1- or

2-point crossover can be regarded as local searching. However, crossover at more than 2 points

is essentially global searching. Such flexible behaviour balances the intensification and diversi-

fication of the QLSCA.

Having justified the adoption of Lévy flight motion and crossover, the detailed explanation

of the proposed QLSCA is as follows:

Q-learning algorithm

The Q-learning algorithm [6] learns the optimal selection policy by interacting with the envi-

ronment. The algorithm works by estimating the best state-action pair through the manipula-

tion of a Q(s, a) table. To be specific, a Q(s, a) table uses a state-action pair to index a Q value

(as a cumulative reward). The Q(s, a) table is dynamically updated based on the reward and

punishment (r) of a particular state-action pair.

Qðtþ1Þðst; atÞ ¼ Qtðst; atÞ þ atðrt þ gmaxðQtðsðtþ1Þ; aðtþ1ÞÞÞ � Qtðst; atÞÞ ð5Þ

The optimal setting for αt, γ, and rt within the Q-learning algorithm requires further clarifi-

cation. When αt is close to 1, higher priority is given to the newly gained information for the

Q-table updates. However, a small value of αt gives higher priority to existing information. To

facilitate exploration of the search space (to maximize learning from the environment), αt can

be set to a high value during early iterations and adaptively reduced in later iterations (to

exploit the current best Q-value). This process is as follows:

at ¼ 1 � 0:9�
t

ðMax IterationÞ ð6Þ

The parameter γ functions as a scaling factor for rewarding or punishing the Q-value based

on the current action. When γ is close to 0, the Q-value is based solely on the current reward

Hybrid Q-learning sine cosine strategy for combinatorial test suite minimization
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or punishment. When γ is close to 1, the Q-value is based on the current and previous reward

and/or punishment. The literature suggests setting γ = 0.8 [37].

The parameter rt serves as the actual reward or punishment. In our current study, the value

of rt is set based on:

rt ¼ 1; if the current action improves fitness

rt ¼ � 1; otherwise

( )

ð7Þ

Summing up, the pseudo code of the Q-learning algorithm is illustrated in Algorithm 2.

Algorithm 2: Pseudo Code for the Q-Learning Algorithm
Input: S = [s1, s2, � � �, sn], A = [a1, a2, � � �, an], Q(s, a)
Output: Updated Q(s, a) table

1 Let st be the state at a particular instance t
2 Let at be the action at a particular instance t
3 for each state S = [s1, s2, � � �, sn] and action A = [a1, a2, � � �, an] do
4 Set Qt(st, at) = 0
5 end
6 Randomly select an initial state, st
7 while stopping criteria not met do
8 From the current state st, select the best action at from the Q-
table
9 Execute action at and get immediate reward/punishment rt using Eq (7)
10 Get the maximum Q value for the next state st+1
11 Update αt using Eq (6)
12 Update Q-table entry using Eq (5)
13 Update the current state, st = st+1
14 end
15 Return the updated Q(s, a) table

Lévy flight motion

To complement the sine and cosine operations within the SCA and ensure that the developed

QLSCA can jump out of local minima, we propose incorporating Lévy flight. Yang popularizes

Lévy flight motion in his implementation of the cuckoo search algorithm [7]. Essentially, a

Lévy flight motion is a random walk (global search operation) that takes a sequence of jumps

that are selected from a heavy-tailed probability function. Ideally, the jumps taken in a Lévy

flight are unpredictable and consist of a mixture of extremely high and low displacements

directed inward (negative) or outward (positive). As an illustration, Fig 4 compares a Lévy

flight to a typical Brownian (random) walk.

Mathematically, the step length of a Lévy flight motion can be defined as follows [7]:

L�evy Flight Step ¼
u
½v�ð1=bÞ ð8Þ

where u and v are approximated from a normal Gaussian distribution in which:

u � Nð0; su2Þ � su v � Nð0; s2
vÞ � sv ð9Þ
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For v value estimation, we use σv = 1. For u value estimation, we evaluate the Gamma func-

tion(Γ) [40] with the value of β = 1.5 [38], and obtain σu using:

su ¼

�
�
�
�

Gð1þ bÞ � sin pb

2

� �

G
ð1þbÞ

2

� �
� b� 2

ðb � 1Þ

2

�
�
�
�

1

b ð10Þ

A lévy flight motion displacement update (with exclusive OR operation�) is then defined

as:

Xðtþ1Þ

i ¼ Xt
i � L�evy Flight Step ð11Þ

Crossover operation

The crossover operation is derived from GAs. Ideally, crossover is a local search operation

whereby two distinct populations Xi and Xj exchange their partial values based on some ran-

dom length β. Visually, crossover is represented in Fig 5.

Fig 4. Brownian motion versus lévy flight motion adopted from [39].

https://doi.org/10.1371/journal.pone.0195675.g004

Fig 5. Crossover operation.

https://doi.org/10.1371/journal.pone.0195675.g005
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The displacement due to crossover can be updated in the following three steps:

Set crossover length b ¼ randomð0; lengthXt
i Þ

Generate random Xt
j such that i 6¼ j

Exchange from position 0 to position b from Xt
j to X

t
i

8
>>><

>>>:

9
>>>=

>>>;

ð12Þ

The QLSCA algorithm

Exploration and exploitation are the key components of reinforcement learning algorithms

(such as Q-learning). Exploration is necessary to understand the long-term rewards and pun-

ishment to be used later during exploitation of the search space. Often, it is desirable to explore

during the early iterations. During later iterations, it is then desirable to favour exploitation.

To achieve such an effect, Mauzo et al. suggest adopting the Metropolis probability function

criterion [41], which is mainly used in simulated annealing. Alternatively, a more straightfor-

ward probability criterion with a similar effect (decreasing over time) can be defined as:

Random r½0; 1� <
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iteration
p go to exploration mode

Otherwise; go to exploitation mode

)

ð13Þ

Our early experiments with the Metropolis probability function indicate no significant per-

formance difference with the probability given in Eq (13). Furthermore, the Metropolis proba-

bility function’s exploitation of the current and previous values can be problematic, since Q-

learning is a Markov decision process that relies on the current and forward-looking Q-values.

For these reasons, we do not favour Metropolis-like probability functions.

To ensure that the learning is adequate (i.e., the roaming of the search space is sufficient),

the QLSCA updates the Q-table for one complete episode cycle (in some random order) for

each exploration opportunity. To support the use of 4 search operators within the QLSCA

(sine, cosine, Lévy flight and crossover), the Q-table needs to be constructed as a 4 × 4 matrix

in which the rows represent the state (st) and the columns represent the action (at) for each

state. Fig 6 depicts a snapshot of the Q-table for the QLSCA along with a numerical example.

Assume that the current state-action pair is st = Sine Operator and has at = Cosine Operator.
The search process selects one of the four operators (sine, cosine, Lévy flight, and crossover) as

the next action (at) based on the maximum reward defined in the state-action pair within the

Q-table. This is unlike the original SCA algorithm in that the cosine or sine operator is selected

based on the probability parameter, r4.

Referring to Fig 6, we assume that the settings are as follows: the current value stored in the

Q-table for the current state is Q(t+1)(st, at) = 1.22 (grey circle in Fig 6); the reward is rt = −1.00;

the discount factor is γ = 0.10; and the current learning factor is at = 0.70. Then, the new value

for Q(t+1)(st, at) in the Q-table is updated based on Eq (4) as follows:

Q(t+1)(st, at) = 1.22 + 0.70�[−1.00 + 0.10�Max(0.00, −1.11, 1.00, −1.00) − 1.22] = −0.26

The state is then changed from sine to cosine. Similarly, the action at = Cosine Operator is

changed to Lévy flight. It should be noted that during both the exploration and exploitation of

Q-value updates, the meta-heuristic QLSCA search process continues in the background. In

other words, for each update, Xbest is kept and the population X is updated accordingly.

Finally, based on the adoption of Lévy flight with sporadic long jumps, the positional

update may sometimes encounter out-of-range values. Within the QLSCA, we establish a
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clamping rule to apply lower and upper bounds to parameter values. In this way, when Xj
moves out of range, the boundary condition brings it back into the search space. There are at

least three types of boundary condition: invisible walls, reflecting walls, and absorbing walls

[42]. With invisible walls, when a current value goes beyond the boundary, the corresponding

fitness value is not computed. With reflecting walls, when a value reaches the boundary, its

value is reflected back to the search space (mirroring effects). With absorbing walls, when a

current value moves out of range, the boundary condition brings it back into the search space

by moving it to another endpoint. For example, if the position of a parameter limited to the

range from 1 to 4, then, when the position exceeds 4, it is reset to 1. For our QLSCA implemen-

tation, we favour absorbing walls for our clamping rule.

To summarize, the complete QLSCA algorithm can be described in three main steps (Step

A: Initialization, Step B: Exploration to Update the Q-table, and Step C: Exploitation to Update

the Q-table), as shown in Algorithm 3. As the name suggests, Step A involves initialization.

Step B includes a complete update of the state-action pair update in 1 cycle in random order.

Finally, Step C updates the currently selected state-action pair.

Algorithm 3: Pseudo Code for the QLSCA Algorithm

Input: S = {s1, s2, � � �, sn}, A = {a1, a2, � � �, an}, Q(s, a), population X
= {X1, X2, � � �, XD}, constant magnitude M, Interaction strength
(t), parameters k = {k1, k2, � � �, kn}, values for each parame-
ters k, v = {v1, v2, � � �, vn}

Output: Updated Q(s, a) table, Xbest, updated population
X0 ¼ fX0

1
;X0

2
; � � � ;X0Ng, Final test suite Fs

/� Step A: Initialization
1 Let st be the state at a particular instance t
2 Let at be the action at a particular instance t
3 for each state S = {s1, s2, � � �, sn} and action A = {a1, a2, � � �, an} do

Fig 6. Q-Table update.

https://doi.org/10.1371/journal.pone.0195675.g006
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4 Set Qt(st, at) = 0
5 end
6 Generate interaction tuple list based on the values of t, k, v (refer
to Fig 7)
7 Randomly select an initial state, st
8 while interaction tuple list is not empty do
9 for iteration = 1 till max iteration do
10 for population count = 1 till population size do
11 Set initial r1 using Eq (3)
12 Choose Step B or Step C probabilistically based on Eq (12)

/� Step B: Exploration for Q-table update �/
13 for each state S = {s1, s2, � � �, sn}, and action A ¼ fa1; a2 . . . ; ang

in random order; //loop for 1 episode
14 do
15 From the current state st, select the best action at from

the Q-table
16 if action (at) == Sine operation then
17 update Xt

i using Eq (2)
18 end
19 else if action (at) == Cosine operation then
20 update Xt

i using Eq (3)
21 end
22 else if action (at) == Lévy flight motion then

Fig 7. The hash map and interaction tuples for MCA(N; 2, 2331).

https://doi.org/10.1371/journal.pone.0195675.g007
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23 update Xt
i using Eq (11)

24 end
25 else if action (at) == Crossover operation then
26 update Xt

i using Eq (12)
27 end
28 Execute action at and get immediate reward/punishment rt

using Eq (7)
29 Get the maximum Q value for the next state st+1
30 Update at using Eq (6)
31 Update Q-table entry using Eq (5)
32 Update the current state, st = st+1
33 Update r1 adaptively using Eq (4)
34 Update the best solution obtained so far, Pti ¼ Xbest
35 end

/� Step C: Exploitation for Q-table update �/
36 Redo Steps 15-34; // loop for 1 complete episode unnecessary
37 end
38 end
39 Obtain the best result (Xbest) from the updated population, X
40 end

QLSCA strategy for t −way test suite generation

Having described the QLSCA algorithm, the following section outlines its use in addressing

the t − way test suite generation problem. In general, the QLSCA is a composition of two main

algorithms: (1) an algorithm for generating interaction tuples that generates combinations of

parameters that are used in the test suite generator for optimization purposes, and (2) a

QLSCA-based test suite generator algorithm. In the next sections, these two algorithms are

detailed.

Interaction tuples generation algorithm

The interaction tuples generation algorithm involves generating the parameter (P) combina-

tions and the values (v) for each parameter combination. The parameter generation processes

use binary digits: 0 indicates that the corresponding parameter is excluded and 1 indicates that

it is included.

Consider an example involving MCA(N; 2, 2331), as shown in Fig 7. This configuration

requires a 2 − way interaction for a system of four parameters. First, the algorithm generates

all possible binary numbers with up to four digits because there are 4 parameters. From these

possibilities, the binary numbers that contain two “1”s are selected; these indicate that there is

a pairwise interaction of parameters (t = 2). For example, the binary number 1100 refers to a

P1 P2 interaction. P1 has two values (0 and 1), P2 has two values (0 and 1), P3 has two values (0

and 1), and P4 has three values (0, 1, and 2). The 2 − way parameter interaction has six possible

combinations based on the parameter generation algorithm. For combination 1001, in which

P1 and P4 are available, there are 2 × 3 possible interactions between P1 and P4. For each

parameter in the combination (with two “1”s), the value of the corresponding parameter is

included in the interaction elements. In this example, the excluded values are marked as “do

not matter”. This process is repeated for the other five interactions, (P1, P2), (P1, P3), (P2, P3),

(P2, P4), and (P3, P4).

To ensure efficient indexing for storage and retrieval, we opted to implement am interac-

tion tuple hash table (Hs) that uses the binary representation of the interaction as the key. The

complete algorithm for generating the interaction elements is highlighted in Algorithm 4.
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Algorithm 4: Algorithm for Interaction Tuples Generation

Input: parameters’ values p, strength of coverage t
Output: Hs as the hash map of t − way interaction tuples

1 Initialize Hs = {}
2 Let m = max no of defined parameters
3 Let p = {p0, p1, � � �, pj}, where p represents the set of values defined
for each parameter
4 for index = 0 to 2m� 1 do
5 Let b = binary number
6 b = convert index to binary
7 if b[index] is equal to 1 then
8 Add the representitave interaction value for p[index]
9 end
10 else
11 Add don’t care value for p[index]
12 end
13 if the no of “1”s in b == t then
14 Set hashkey = b
15 Append the rest of p[index] with don’t care if necessary
16 Put p into the hashmap, Hs, using the hash key
17 end
18 end
19 Return Hs

Test suite generation algorithm

The principle underlying the QLSCA-based strategy is highlighted in Fig 6. Nevertheless, to

apply the general QLSCA to the t − way test generation problem, three adaptations must be

made.

The first adaptation involves the input parameters. To cater to the t − way problem, the

QLSCA needs to process the parameters (k), the values (v) of each parameter, and the interac-

tion strength (t). Based on these values, the interaction tuples can be generated.

The second adaptation is based on the way the population is represented within the

QLSCA. The t − way test generation problem is a discrete combinatorial problem. Therefore,

the QLSCA initializes the population search space as a D-dimensional integer population Xj =

{Xj,1, Xj,2, Xj,3, � � �, Xj,D] in which each dimension represents a parameter and contains integers

between 0 and (vi), which is the number of values the ith parameter takes.

Finally, the third adaptation is to the stopping criterion. When any particular interaction

tuple has been covered (and the test case covering those tuples has been added to the final test

suite Fs), then, the tuples are deleted from the interaction tuples list (refer to step 37 in Algo-

rithm 5). Therefore, the QLSCA stops when the interaction tuple is empty (refer to step 6 in

Algorithm 5). The complete test suite generation algorithm based on the QLSA is summarized

in Algorithm 5.

Algorithm 5: The QLSCA Strategy

Input: S = {s1, s2, � � �, sn}, A = {a1, a2, � � �, an}, Q(s, a), population X
= {X1, X2, � � �, XD}, constant magnitude M,
Interaction strengthðtÞ;
parameters k ¼ fk1; k2; � � � ; kng; values for each parameters
k; v ¼ fv1; v2; � � � ; vng

Output: Updated Q(s, a) table, Xbest, updated population
X0 ¼ fX0

1
;X0

2
; � � � ;X0Ng, Final test suite Fs
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/� Step A: Initialization �/
1 for each state S = {s1, s2, � � �, sn} and action A = {a1, a2, � � �, an} do
2 Set Qt(st, at) = 0
3 end
4 Generate interaction tuple list based on the values of t; k; v ðrefer to Fig 7Þ
5 Randomly select an initial state, st
6 while interaction tuple list is not empty do
7 for iteration = 1 till max iteration do
8 for population count = 1 till population size do
9 Set initial r1 using Eq (3)
10 Choose Step B or Step C probabilistically based on Eq (12)

/� Step B: Exploration for Q-table update �/
11 for each state S = {s1, s2, � � �, sn} and action

A = {a1, a2, � � �, an} in random order //loop for 1 episode
12 do
13 From the current state st, select the best action at from the

Q-table
14 if action (at) == Sine operation then
15 update Xt

i using Eq (1)
16 end
17 else if action (at) == Cosine operation then
18 update Xt

i using Eq (2)
19 end
20 else if action (at) == Lévy flight motion then
21 update Xt

i using Eq (10)
22 end
23 else if action (at) == Crossover operation then
24 update Xt

i using Eq (11)
25 end
26 Execute action at and get immediate reward/punishment rt

using Eq (6)
27 Get the maximum Q value for the next state st+1
28 Update at using Eq (5)
29 Update Q-table entry using Eq (4)
30 Update the current state, st = st+1
31 Update r1 adaptively using Eq (3)
32 Update the best solution obtained so far, Pti ¼ Xbest
33 end

/� Step C: Exploitation for Q-table update �/
34 Redo Steps 15-34; // loop for 1 complete episode unnecessary
35 end
36 Obtain the best result (Xbest) from the updated population, X
37 Add Xbest in the final test suite list; Fs and delete the covered tuples

in the interaction tuple list
38 end
39 end

Experimental study

Our experiments focus on two related goals: (1) to characterize the performance of the QLSCA

in comparison to that of the SCA, and (2) to benchmark the QLSCA and the SCA against

other meta-heuristic approaches.

To achieve these goals, we have divided our experiments into three parts. In the first part,

we run 3 selected CAs (CA(N; 2, 313), CA(N; 2, 105), and CA(N; 3, 46)) and 3 selected MCAs

(MCA(N; 2, 513822),MCA(N, 2, 6151463823), andMCA(N, 2, 716151463823)).

Hybrid Q-learning sine cosine strategy for combinatorial test suite minimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0195675 May 17, 2018 16 / 29

https://doi.org/10.1371/journal.pone.0195675


In the second part, we benchmark the sizes of the test suites generated by our SCA and

QLSCA against those of existing meta-heuristics based on the benchmark t − way experiments

published in [9]. To be specific, the benchmark experiments involve the CA(N; t, 3k) with vary-

ing t (from 2 to 4) and k (from 2 to 12), the CA(N;t, v7) and the CA(N;t, v10) with varying t
(from 2 to 4) and v (from 4 to 6).

In the third part, we analyse our results statistically. We intend to determine whether the

performance of the QLSCA at minimizing the test suite size is a statistically significant

improvement over compared to existing strategies.

We developed the SCA and the QLSCA using the Java programming language. For all

experiments involving the SCA and the QLSCA, we set the population size = 40, max itera-

tions = 100, and the constant M = 3 (refer to Eq (3)) for all the experiments. We execute the

QLSCA and the SCA 30 times to ensure statistical significance. Our platform comprises a PC

running Windows 10 with a 2.9 GHz Intel Core i5 CPU, 16 GB of 1867 MHz DDR3 RAM and

a 512 MB flash HDD.

The best and mean times and sizes (whenever applicable) for each experiment are reported

side-by-side. The best cell entries are marked with “?”, while the best mean cell entries are in

bold. Unavailable entries are denoted by NA.

To put our work into perspective, we highlight all the parameters for the strategies of inter-

ests (the PSTG [8], DPSO [9], APSO [10], and the CS [11]) obtained from their respective pub-

lications (as depicted in Table 2).

Characterizing the performance of the SCA and the QLSCA

This section highlights the experiments that compare the SCA and the QLSCA with respect to

test suite size, execution time, consistency (i.e., the range of variation in the generated results)

and convergence patterns of the SCA and the QLSCA. To objectively perform this comparison,

Table 2. Algorithm parameters for strategies of interestsn.

Strategies Parameters Values

PSTG Max Iteration 100

Population Size 80

Acceleration Coefficients (c1 and c2) 1.375

Inertia Weight (w) 0.3

DPSO Max Iteration 250

Population Size 80

Acceleration Coefficients (c1 and c2) 1.3

Inertia Weight (w) 0.5

Probability Parameter 1 (pro1) 0.5

Probability Parameter 2 (pro 2) 0.3

Probability Parameter 3 (pro 3) 0.7

APSO Max Iteration 100

Population Size 80

Dynamic Acceleration Coefficients (c1 and c2) 1� c� 2

Dynamic Inertia Weight (w) 1� w� 2

CS Max Iteration 100

Population Size 100

Probability pa 0.25

https://doi.org/10.1371/journal.pone.0195675.t002
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both strategies adopt the same parameter settings and are implemented using the same data

structure and implementation language.

Table 3 highlights our results for the test size and execution time. Fig 8 depicts the box plot

analysis. Fig 9 highlights the convergence patterns for the best 30 runs for each CA and MCA,

while Fig 10 depicts the average percentage distribution for each search operator over all 30

runs.

Benchmarking with other meta-heuristic based strategies

Unlike the experiments in the previous section, the benchmark experiments in this section (as

adopted from [9]) also include comparisons of the QLSCA’s and SCA’s performances to those

of all other strategies. However, the execution times have been omitted due to differences in

Table 3. Time and size performances for SCA and QLSCA.

CA and MCA SCA QLSCA

Size Time (sec) Size Time (sec)

Best Mean Best Mean Best Mean Best Mean

CA(N; 2, 313) 20 21.45 44.58� 51.04 17� 18.45 56.68 67.14

CA(N; 2, 105) 118 120.10 19.55� 20.55 117� 118.45 52.06 54.22

CA(N; 3, 46) 64� 89.95 19.89� 29.27 64� 66.70 50.34 54.08

MCA(N; 2, 513822) 21 22.75 21.27� 24.01 20� 21.00 45.06 52.56

MCA(N, 2, 6151463823) 42 45.10 235.18� 254.45 37� 39.65 416.54 497.42

MCA(N, 2, 716151463823) 51 56.35 299.80� 358.60 46� 51.25 634.02 940.24

https://doi.org/10.1371/journal.pone.0195675.t003

Fig 8. Box plots for Table 3.

https://doi.org/10.1371/journal.pone.0195675.g008
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Fig 9. Convergence patterns for Table 3.

https://doi.org/10.1371/journal.pone.0195675.g009

Fig 10. Average search operator percentage distribution for Table 3.

https://doi.org/10.1371/journal.pone.0195675.g010
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the running environment and in the parameter settings (e.g., PSO relies on the population

size, the inertia weight, and social and cognitive parameters, while the cuckoo search relies on

the elitism probability, number of iterations, and population size) and implementation (e.g.,

the data structure and the implementation language). Table 3 to 10 highlight our complete

results.

Statistical analysis

Our statistical analysis of all the obtained results from Tables 3 to 10 is based on the 1 ×N pair

comparisons. The Wilcoxon rank-sum test is used to assess whether the control strategy pro-

vides results that are significantly different from those of the other strategies.

To handle FWER errors due to multiple comparisons, we adopted the Bonferroni-Holm

[43] correction for adjusting the value of α (based on pholm ¼ a

i) in ascending order. For an i-

ordered strategy, the p − value pi is compared with the value of pholm for the same row of the

table. In this study, α is set to 0.05 and 0.10 because most strategies are well-tuned and report

their known best test suite sizes. Whenever the p − value pi is less than the corresponding value

of pholm, the results imply that the test suite is smaller for the QLSCA than for the i-ordered

Table 4. Size performance for CA(N; 2, 3k) where k is varied from 3 to 12.

K PSTG [8] DPSO [9] APSO [10] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

3 9� 9.55 NA NA 9� 9.21 9� 9.60 9� 9.70 9� 9.67

4 9� 10.15 9� 9.00 9� 9.95 9� 10.00 9� 9.07 9� 9.00

5 12 13.81 11� 11.53 11� 12.23 11� 11.80 11� 11.93 11� 11.06

6 13 15.11 14 14.50 12� 13.78 13 14.20 13 14.10 14 14.27

7 15 16.94 15 15.17 15 16.62 14� 15.60 14� 15.33 14� 15.10

8 15� 17.57 15� 16.00 15� 16.92 15� 15.80 5� 16.33 15� 15.77

9 17 19.38 15� 16.43 16 18.31 16 17.20 16 17.78 5� 16.27

10 17 19.78 16 17.30 17 18.12 17 17.80 18 18.60 15� 16.97

11 17 20.16 17 17.70 NA NA 18 18.60 18 19.80 16� 17.70

12 18 21.34 16� 17.93 NA NA 18 18.80 19 20.33 16� 17.87

https://doi.org/10.1371/journal.pone.0195675.t004

Table 5. Size performance for CA(N; 3, 3k) where k is varied from 4 to 12.

K PSTG [8] DPSO [9] APSO [10] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

4 27� 29.30 NA NA 27� 28.90 28 29.00 27 29.57 27� 29.70

5 39 41.37 41 43.17 41 42.20 38� 39.20 39 42.43 39 41.90

6 45 46.76 33� 38.30 45 46.51 43 44.20 33� 40.47 33� 37.57

7 50 52.20 48� 50.43 48� 51.12 48� 50.40 50 51.30 49 50.30

8 54 56.76 52 53.83 50� 54.86 53 54.80 54 56.57 52 53.43

9 58 60.30 56� 57.77 59 60.21 58 59.80 59 62.63 56� 56.60

10 62 63.95 59� 60.87 63 64.33 62 63.60 64 68.30 59� 60.63

11 64 65.68 63 63.97 NA NA 66 68.20 70 74.2 62� 63.37

12 67 68.23 65� 66.83 NA NA 70 71.80 78 80.73 65� 66.13

https://doi.org/10.1371/journal.pone.0195675.t005

Hybrid Q-learning sine cosine strategy for combinatorial test suite minimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0195675 May 17, 2018 20 / 29

https://doi.org/10.1371/journal.pone.0195675.t004
https://doi.org/10.1371/journal.pone.0195675.t005
https://doi.org/10.1371/journal.pone.0195675


Table 6. Size performance for CA(N; 4, 3k) where k is varied from 5 to 12.

K PSTG [8] DPSO [9] APSO [10] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

5 96 97.83 NA NA 94 96.33 94 95.80 81� 87.50 81� 84.63

6 133 135.31 131 134.37 129� 133.98 132 134.20 130 133.80 129� 133.77

7 155 158.12 150� 155.23 154 157.42 154 156.80 153 156.23 150� 154.13

8 175 176.94 171� 175.60 178 179.70 173 174.80 174 179.10 172 174.67

9 195 198.72 187 192.27 190 194.13 195 197.80 196 202.83 186� 187.63

10 210 212.71 206 219.07 214 212.21 211 212.20 221 228.57 205� 207.73

11 222 226.59 221 224.27 NA NA 229 231.00 243 253.95 220� 222.40

12 244 248.97 237 239.85 NA NA 253 255.80 262 277.77 233� 236.77

https://doi.org/10.1371/journal.pone.0195675.t006

Table 7. Size performance for CA(N; 2, v7) where v is varied from 2 to 7.

v PSTG [8] DPSO [9] APSO [10] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

2 6 6.82 7 7.00 6� 6.73 6� 6.80 7 7.10 7 7.00

3 15 15.23 14� 15.00 15 15.56 15 16.20 15 15.54 15 15.10

4 26 27.22 24 25.33 25 26.36 25 26.40 25 26.73 23� 24.77

5 37 38.14 34� 35.47 35 37.92 37 38.60 39 41.07 34� 35.37

6 NA NA 47� 49.23 NA NA NA NA 54 57.30 48 48.90

7 NA NA 64� 66.37 NA NA NA NA 73 75.70 64� 65.47

https://doi.org/10.1371/journal.pone.0195675.t007

Table 8. Size performance for CA(N; 3, v7) where v is varied from 2 to 7.

v PSTG [8] DPSO [9] APSO [10] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

2 13 13.61 15 15.06 15 15.80 12� 13.80 13 15.47 15 15.07

3 50 51.75 49 50.60 48� 51.12 49 51.60 48� 50.93 49 50.37

4 116 118.13 112� 115.27 118 120.41 117 118.40 118 122.03 112� 115.23

5 225 227.21 216 219.20 239 243.29 223 225.40 235 239.50 215� 218.00

6 NA NA 365 370.57 NA NA NA NA 405 411.50 364� 369.53

7 NA NA 574 577.67 NA NA NA NA 637 651.37 573� 577.90

https://doi.org/10.1371/journal.pone.0195675.t008

Table 9. Size performance for CA(N; 4, v7) where v is varied from 2 to 7.

v PSTG [8] DPSO [9] APSO [10] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

2 29 31.49 34 34.00 30 31.34 27� 29.60 29 31.27 31 31.13

3 155 157.77 150 154.73 153 155.2 155 156.80 153 156.33 149� 154.70

4 487 489.91 472� 481.53 472 478.9 487 490.20 487 493.73 477 483.67

5 1176 1180.63 1148� 1155.63 1162 1169.94 1171 1175.20 1185 1203.00 1150 1159.23

6 NA NA 2341� 2357.73 NA NA NA NA 2465 2496.05 2347 2359.50

7 NA NA 4290� 4309.60 NA NA NA NA 4595 4618.40 4293 4315.00

https://doi.org/10.1371/journal.pone.0195675.t009
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strategy, which means that the QLSCA has a smaller median population. Table 11 summarizes

the overall statistical analysis.

Experimental observation

Reflecting on the experimental results yields a number of observations.

Concerning the first set of experiments described in Section 7.1, Table 3 compares the per-

formances of the QLSCA and the SCA in terms of test size and execution time. We note that

Table 10. Size performance for CA(N; t, v10) where t is varied from 2 to 4.

t v PSTG [8] DPSO [9] CS [11] SCA QLSCA

Best Mean Best Mean Best Mean Best Mean Best Mean

2 4 NA NA 28� 29.20 NA NA 32 33.17 28� 28.63

5 45 48.31 42 43.67 45 47.8 50 51.43 41� 43.13

6 NA NA 58� 59.23 NA NA 71 73.13 58� 59.47

3 4 NA NA 141 143.70 NA NA 166 171.77 140� 142.50

5 287 298.00 273� 276.20 297 299.20 335 343.33 273� 274.60

6 NA NA 467 470.50 NA NA 584 596.40 463� 468.83

4 4 NA NA 664 667.00 NA NA 743 779.25 657� 661.33

5 1716 1726.72 1618 1620.80 1731 1740.20 1762 1788.25 1607� 1613.00

6 NA NA 3339� 3342.50 NA NA 3420 3492.50 3343 3352.50

https://doi.org/10.1371/journal.pone.0195675.t010

Table 11. Wilcoxon rank-sum tests for Tables 3 till 10 with QLSCA as control strategy.

i Strategies pi-

value

Hypothesis (α = 0.05,

pholm = 0.05/i)
Hypothesis (α = 0.10,

pholm = 0.10/i)
Remarks

Table 3 1 SCA 0.014 pholm = 0.05, Reject Ho pholm = 0.10, Reject Ho None

Table 4 3 PSTG 0.0035 pholm = 0.016, Reject Ho pholm = 0.033, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of DPSO and APSO are ignored2 SCA 0.0065 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho
1 CS 0.011 pholm = 0.05, Reject Ho pholm = 0.10, Reject Ho

Table 5 3 SCA 0.0055 pholm = 0.016, Reject Ho pholm = 0.033, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of DPSO and APSO are ignored2 PSTG 0.0105 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho
1 CS 0.0255 pholm = 0.05, Reject Ho pholm = 0.10, Reject Ho

Table 6 3 SCA 0.006 pholm = 0.016, Reject Ho pholm = 0.033, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of DPSO and APSO are ignored2 PSTG 0.006 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho
1 CS 0.006 pholm = 0.05, Reject Ho pholm = 0.10, Reject Ho

Table 7 2 SCA 0.014 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of DPSO and APSO are ignored1 DPSO 0.052 pholm = 0.05, Cannot Reject
Ho

pholm = 0.10, Reject Ho

Table 8 2 SCA 0.014 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of PSTG, APSO and CS are ignored1 DPSO 0.1035 pholm = 0.05, Cannot Reject
Ho

pholm = 0.10, Cannot Reject
Ho

Table 9 2 SCA 0.014 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of PSTG, APSO and CS are ignored1 DPSO 0.1125 pholm = 0.05, Cannot Reject
Ho

pholm = 0.10, Cannot Reject
Ho

Table 10 2 SCA 0.004 pholm = 0.025, Reject Ho pholm = 0.05, Reject Ho Owing to incomplete sample (i.e. with one or more NA entries), the

contributions of PSTG, APSO and CS are ignored1 DPSO 0.0695 pholm = 0.05, Cannot Reject
Ho

pholm = 0.10, Reject Ho

https://doi.org/10.1371/journal.pone.0195675.t011
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for all mean test sizes, the QLSCA outperforms the SCA (6 of 6). A similar trend can be seen

for the best test size. The QLSCA outperforms the SCA in all cases. On a positive note, the

SCA can match the result of the QLSCA for the CA(N; 3, 46). As expected, the SCA outper-

forms the QLSCA in terms of execution time in all cases due to the overhead introduced by

the Q-learning algorithm. Arguably, the trade-off between execution time and test size is nec-

essary to ensure efficient, quality tests and to promote cost savings.

The box plot analyses of Table 3 shown in Fig 8(a)–8(f) reveal a number of salient character-

istics of the QLSCA and the SCA search processes. Considering the CA(N; 2, 313), even though

they have the same quartile bias range (i.e., they incline towards the lower quartile) and the

same top-to-bottom whisker width, the QLSCA has a lower median than the SCA. For the CA
(N; 2, 105), the box plot is symmetric in the case of the SCA. Unlike that of the SCA, when the

outlying point is removed, the box plot for the QLSCA is biased towards the upper quartile

(but with a lower top and bottom whisker width). Nevertheless, the median of the QLSCA is

far lower than that of the SCA. In the CA(N; 3, 46), the box plot for the SCA is asymmetric. The

SCA also has a larger interquartile range and a higher mean than the QLSCA. Additionally,

unlike the SCA, the QLSCA’s whisker width is also 0, indicating consistently better results for

the 20 runs, except for one outlier. As far as the MCA(N; 2, 513822) is concerned, both the SCA

and the QLSCA have the same bias towards the lower quartile. However, the QLSCA has a bet-

ter median and top-to-bottom whisker width. As for theMCA(N, 2, 6151463823), both the SCA

and the QLSCA have the same bias towards the upper quartile. Ignoring outliers, the inter-

quartile range is smaller for the SCA than the QLSA. However, the median of the SCA is far

greater than that of the QLSCA. Finally, in the case of theMCA(N, 2, 716151463823), the

box plot for the SCA can be seen as a shifted version of the box plot of the QLSA (from left to

right). Therefore, the median of the QLSCA is lower than that of the SCA.

Complementing the box plots, the convergence pattern analyses for the best run in Fig 9

(a)–9(f) describe the convergence behaviour of the QLSCA and the SCA. With the exception

of the CA(N; 2, 105) and the CA(N; 3, 46), all other cases (CA(N; 2, 313,MCA(N; 2, 513822),

MCA(N, 2, 6151463823), andMCA(N, 2, 716151463823)) indicate that the QLSCA converges

faster than the SCA. Therefore, it has the potential to yield a smaller test suite size.

We note that the average search operator percentage distribution shown in Fig 10 is almost

the same for all the search operations (nearly 25%) involving uniform CAs (CA(N; 2, 313), CA
(N; 2, 105), and CA(N; 3, 46)). However, for non-uniform CAs (MCA(N; 2, 513822),MCA(N, 2,

6151463823), andMCA(N, 2, 716151463823)), there is a clear tendency to favour crossover opera-

tion (i.e., with the highest average percentage for all 3 MCAs) and less tendency to employ

Lévy flight motion (i.e., with the lowest average percentage for all 3 MCAs).

In the second set of experiments, the benchmark results highlight the overall performance

of the QLSCA and the SCA in comparison with other meta-heuristic based strategies. Table 4

demonstrates that the QLSCA outperforms all other strategies with respect to the best mean

test size with 90% (9 of 10 entries). DPSO and APSO produce the second-best with 20% (2 of

10 entries) of the best mean test sizes. The PSTG, the CS, and the SCA do not contribute any of

the best means. Concerning the best test size, the QLSCA also outperforms other strategies

with 90% (9 of 10 entries). Other strategies contribute 50% of the best results (5 of 10 entries),

except for the PSTG, which contributes only 30% (3 of 10 entries).

In Table 5, we observe that the QLSCA has the best mean test size 77.7% of the time (7 of 9

entries). The runner-up is the CS with 22.22% (2 of 9 entries). The SCA and other strategies do

not contribute to the best mean test size. Concerning the best test size, the QLSCA has the best

performance with 66.66% (6 of 9 entries). DPSO comes in second with 55.55% (5 of 9 entries).

APSO comes in third with 33.33% (3 of 9 entries). The CS comes in fourth with 22.22% (2 of 9

entries). Finally, the SCA and the PSTG come in last with 11.11% (1 of 9 entries).
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Concerning the results in Table 6, there is no contribution from other strategies because the

QLSCA dominates the best mean test size with 100% (8 of 8). As for the best test size, the

QLSCA contributes 87.5% (7 of 8 entries) and DPSO contributes 25% (2 of 8 entries). APSO

and the SCA contribute 12.5% (1 of 8 entries). The CS and the PSTG perform the worst with

no examples having the best test size.

As for Table 7, the QLSCA contributes 66.66% (4 of 6 entries) as far as the best mean test

size is concerned. The other best mean test sizes are shared by APSO and DPSO with 16.66%

(1 of 6 entries). DPSO performs the best performance with respect to the best test size with

66.66% (4 of 6 entries). The QLSCA comes in second with 50% (3 of 6 entries). APSO and the

CS come in third with 16.66% (1 of 6 entries). The PSTG and the SCA do not contribute as far

as the best test size is concerned.

In Table 8, the QLSCA outperforms other strategies with 66.66% (4 of 6 entries) as far as

the mean test size is concerned. The PSTG and DPSO share the rest of the best mean test sizes

with 16.66% (1 of 6 entries). The other strategies do not contribute towards the best mean test

size. A similar observation can be seen as far as the best test size is concerned. The QLSCA out-

performs all other strategies with 66.66% (4 of 6 entries). All the other strategies contribute at

least 16.66% (1 of 6 entries), except for the PSTG, which contributes 0%.

According to Table 9, DPSO dominates as far as the best mean test size is concerned with

66.66% (4 of 6 entries). The QLSCA and the CS come in second with 16.66% (1 of 6 entries).

The SCA and the other strategies do not contribute as far as the best mean test size is con-

cerned. A similar observation can be made in the case of the best test size. DPSO outperforms

all the other strategies with 66.66% (4 of 6 entries). The QLSCA and the CS are second and

contribute 16.66% (1 of 6 entries). The SCA and the other strategies do not contribute to the

best test size.

Concerning the results in Table 10, we observe that the QLSCA outperforms the other strat-

egies with 77.77% (7 of 9 entries) as far as the best mean test size is concerned. DPSO comes in

second with 22.22% (2 of 9 entries). Aside from the QLSCA and DPSO, no other strategies

contribute towards the best mean test size. Similarly, no strategies contribute towards the best

test size apart from the QLSCA and DPSO with 88.88% (8 of 9 entries) and 44.44% (4 of 9

entries), respectively.

Statistical analyses for Tables 3 through 10 (given in Table 11), indicate that the QLSCA sta-

tistically dominates all the state-of-the-art strategies at the 90% confidence level. From the sta-

tistical analysis for Table 3, the significance of the QLSCA in comparison to the SCA is

evident. The analyses for Tables 4 through 6 also support the alternate hypothesis (that the

QLSCA performs better than the PSTG, the SCA, and the CS). The contributions of DPSO

and APSO are ignored because results are unavailable for some CAs. Referring to the analyses

for Tables 7 to 9, the QLSCA is better than the SCA but not DPSO at the 95% confidence level

(excluding contributions from the PSTG, APSO, and the CS). However, at the 90% confidence

level, the QLSCA is better than DPSO for Tables 7 and 10.

Threats to validity

Normally, most of the research in this field addresses different threats during experiments and

evaluations. These threats are to internal and external validity and depend on the type of

research. This study is not infallible with respect to these threats. Threats to external validity

occur when we cannot generalize experiments to real-world problems. Here, there is no guar-

antee that the adopted benchmarks represent real-world applications with the same number of

parameters and values and the same interaction strength. We have tried to eliminate this threat

by choosing the most common and realistic benchmarks in the literature for the experiments.
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These benchmarks are widely used for evaluations and have been selected from real configur-

able software or obtained from a simulation of possible configurations.

Threats to internal validity are concerned with the factors that affect the experiments with-

out our knowledge and/or are out of our control. The differences in population size, the num-

ber of iterations and parameter settings of each meta-heuristic based strategy are examples of

threats to internal validity. Because source code is not available for all implementations, we

cannot ensure that the compared strategies have the same number of fitness function evalua-

tions as the QLSCA. Despite these differences, we believe that our comparison is valid because

the published test size results are obtained using the best control parameter settings and are

not affected by the operating environment. In fact, in addition to the best size results, we relied

on the mean results to ascertain the performance of each strategy due to the randomness of

each meta-heuristic run.

Another threat to internal validity is the generation time for each strategy. It is well-known

that the size of the test suite is not affected by the environment. However, the generation time

for the test suite is strongly affected by the running environment. Therefore, we cannot directly

compare the generation time with published results. Indeed, to compare the generation time

fairly, it is necessary that all strategies be implemented and used in the same environment. In

fact, in many cases, the strategies may need to be implemented in the same programming lan-

guage using the same data structure (in addition to from running for the same number of

iterations).

Finally, the choice of unsupervised reinforcement learning based on the Q-learning algo-

rithm may be another threat to internal validity. State-action-reward-state-action (SARSA)

[29], a competitor to Q-learning, could also be chosen for the QLSCA. Unlike Q-learning,

which exploits look-ahead rewards, SARSA obtains rewards directly from the actual next state.

We believe that because most of the time, the look-ahead reward eventually becomes the actual

reward (except when there is a tie in the Q-table), the choice between SARSA and Q-learning

is immaterial and results in no significant difference in performance.

Concluding remarks

In this paper, we have described a novel hybrid QLSCA that uses a combination of the sine,

cosine, Lévy flight, and crossover operators. Additionally, we have applied the QLSCA to the

combinatorial test suite minimization problem as our benchmark case study.

The intertwined relationship between exploration and exploitation in both Q-learning and

the QLSCA strategy needs to be highlighted. As far as the Q-learning algorithm is concerned,

exploration and exploitation deal with online updating of (learned) Q-table values to identify

promising search operators for future selection (using rewards and punishments). Initially, Q-

learning favours exploration, but in later iterations, it favours exploitation (using a probabilis-

tic value that decreases over time). Unlike Q-learning, the QLSCA’s exploration and exploita-

tion obtain the best possible solutions by dynamically executing the right search operator at

the right time. Specifically, the exploration and exploitation of the QLSCA work synergistically

with the Q-table. With the help of the Q-table, the QLSCA can eliminate the switch parameter

r4 defined in the SCA (refer to Eqs 1 and 2). Therefore, the QLSCA, unlike the SCA, can adap-

tively identify the best operation based on the learned Q-table values. In this manner, the

QLSCA’s decision to explore or exploit (i.e., choosing the best search operator at any point in

the search process) is directly controlled by the learned Q-table values.

Concerning the ensemble of operators, the introduction of crossover and Lévy flight within

the QLSCA helps enhance the solution diversity and provides a mechanism for leaving local

extrema. In addition to the fixed switching probability and the bounded magnitude of the sine
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and cosine functions, the fact that the sine and cosine operators are mathematically related

(see Eqs 14 and 15) can be problematic.

cosy ¼ sin
p

2
� y

� �

ð14Þ

siny ¼ cos
p

2
� y

� �

ð15Þ

As far as intensification and diversification are concerned, the use of either sine or cosine

may cause the search process to become stuck at a local minimum (because they alternate

from -1 to 1). Consequently, the performance of the SCA appears to be poorer than that of the

QLSCA (and the other strategies) in almost all cases. In fact, the box plot (see Fig 8) and the

convergence pattern analyses (see Fig 9) confirm our observation. On a positive note, the SCA

runs much faster than the QLSCA. The introduction of additional operators and Q-learning

cuts the execution time in half compared to the original SCA.

Considering the average search operator percentage distribution, we observe the following

patterns based on our experiments.

• For uniform CAs, the search operators are almost equally distributed. In such a situation, the

Q-learning mechanism gives each search operation an equal opportunity to undertake the

search.

• For non-uniform CAs (MCAs), Q-learning is more inclined towards the crossover opera-

tion. Unlike the uniform CAs, the MCAs depend on number of parameter matchings for

each test case in the test suite being different. Its ability to flexibly serve for both local and

global searches is perhaps the main reason for Q-learning to favour the crossover operation.

However, Lévy flight is less preferred by Q-learning because the resulting values are often

too extreme and cause out-of-boundary parameter matching. When reflected back inside

the boundary, the selected parameter is always reset to the boundary of the other endpoint

(as an absorbing wall), which inadvertently promotes less diverse solutions.

In terms of the overall performance, in addition to surpassing the original SCA, the QLSCA

has also outperformed many existing strategies by offering the best means in most of the table

cell entries (the closest competitor is DPSO). Our statistical analyses support this observation.

Putting DPSO aside, when α = 0.05, the QLSCA statistically outperforms the original SCA, the

PSTG, APSO and the CS in all configurations given in Tables 3 to 10. When α = 0.10, the

QLSCA is statistically better than DPSO in two of four configuration tables (Tables 7 and 10).

Therefore, we believe that the QLSCA offers another useful alternative strategy for solving the

t − way test suite minimization problem.

The scope of future work includes our current evaluation of applying the QLSCA to other

well-known optimization problems (e.g., timetabling and vehicle-routing problems) because

of its performance. Additionally, we are investigating the comparative performance of the

case-based reasoning approach and fuzzy inference systems with the Q-learning approach for

the QLSCA.
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