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ABSTRACT

Billions of barrels of oil and gas are consumed around the world daily and these oil and
gas are being mainly transported and distributed through pipelines. The pipelines are
demonstrably safe and are reliable systems to transport hydrocarbons, owing to the
combination of good design, materials, and operating practices. However, if the pipeline
fail, it is one of the most frustrating issues as its significant adverse would impact
environment and public safety as well as severe economic loss. The objective of this
study is to construct a cause and effect relationship framework of pipeline failure due to
human factor using Bayesian Network (BN) approach. The potential human factors of
the pipeline failure linked to corrosion were identified and categorized into three
categories that are maintenance, monitoring, and operational errors. The predictive and
diagnosis analyses of the Bayesian Network were performed to find the casual links
which cause the failure in the system and make a prediction of the control measures to
reduce the rate of the human mistakes. Results revealed that operational error showed a
significant effect when the system operates beyond the limits of its design. In
conclusion, Bayesian Networks appear to be a solution to build an effective oil and gas
pipeline human error management model by providing information about the important
human error that needs to be controlled. Thus, this framework may assist the decision
maker to decide when and where to take preventive or mitigate measures in the risk
management process of a pipeline.
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1.0 INTRODUCTION

Oil and gas pipelines are a safe form of energy transportation, and the industry now has
many years of operational experience. However, there continue to be frequent and tragic
pipeline failures around the world (Hill et al., 2012). Leakage of oil and gas pipelines
occurs due to the material defects, operational errors or other reasons, which may cause
explosions and fires, resulting in casualties, environmental damage and material loss
(Sulaiman and Tan, 2014). The safety of today’s pipelines is dependent on not only
their design and operation, but also their maintenance, and management (Khakzad et al.,
2011). Therefore, it is important to develop new risk assessment technique that can
provide more information and flexibility to the industry for better risk management than
the available techniques.
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The causes of pipeline failures can range from internal issues such as corrosion or
material defects to outside forces (Yang, 2010; Yang and Mannan, 2010). Human error
IS a very sensitive topic because it involves the actions of an individual (Hill et al.,
2012). As one of the most challenging factors to be tracked down, human error factors
are always related to many different areas, including engineering and psychology. To
build a model to assess human error, engineers need to deal with many elements, such
as identifying incorrect operation factors, defining the scope of the model, the
methodology, designing, and data collection (Wu et al., 2015).

Risk assessment methods should take into account all these factors in combination with
each other. Therefore, it can be stated that available methodologies are not able to
provide accurate results because of their inadequate ability to describe the variety of
risks. Hence, it is important to develop a method that has the ability to quantify risk
arising from the uncertainty of the pipeline failure due to human factors. In this work,
Bayesian network approach is introduced to determine and predict risk associated with
human interventions.

A Bayesian network describes causal influence relations among variables via a directed
acyclic graph. A probability is associated with each state of the node. This probability is
defined, a priori for a root node and computed by inference for the others (Weber et al.
2012).  Bayes’ theorem provides a means for making these probability calculations.
Essentially, it is a relationship between conditional probability P(A| B) and marginal
probabilities (P(A) and P(B)) and is given for two events, as illustrated in Figure 1, can
be expressed by Bayes’ Theorem:

P(B| A)P(A)
P(B)

Figure 1: Basic example of a Bayesian Network

P(A| B) = 1)

2.0 MATERIALS AND METHODS
Figure 2 summarises the steps to develop a Bayesian Network risk assessment model.
The details of each step are described as follows:

Data BN CPTs Analysis and
collection construction formulation decision making

Figure 2: Flow diagram for risk assessment model

2.1 Data collection

The scope of risk analysis in this present paper is limited to corrosion damage. The goal
of the proposed model was to estimate the probability of pipeline condition by taking
into account the influence of human factors coming from various area. The areas are
divided into three main categories for instance during maintenance, monitoring and
operation activities. In data collection stage, the parameters that reflect the causality
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scenario were determined. Literature search or pipeline historical data due to corrosion
is utilised throughout the understanding of the scenario.

2.2 Development of Bayesian Network model
The first step in constructing the BN is the development of the graphical representation

to express the cause and effect relationships between the variables. This is important as
it provides a straightforward means of analysing and communicating causal
assumptions that are not easily expressed using standard mathematical notation. In this
study, a commercial software package namely Hugin Expert was used to construct the
BN model.Software Hugin Expert allows interactive creation of the network,
maintenance of knowledge bases and integrates new evidence, efficient algorithm to
support the implementation of Bayesian probability calculations, thus making a
complete probabilistic model (Eleye-Datubo et al. 2006).

2.3 Formulation of CPTs and prior probabilities
The next step was to specify the possible states and define the conditional probability

tables (CPTs) value. The data for prior probabilities and conditional probability tables
were gathered from existing literatures. Prior to performing the analysis, the probability
values in every column of CPTs were normalized to become 1. Probability values of the
marginal and conditional were required to be nonzero in which each condition of CPT is
in the range of 0 to 1. The information was collected from existing literatures for
onshore pipeline incidents.

2.4 Bayesian Network analyses
Two types of analyses were carried out namely prediction analysis and diagnosis

analysis. In the prediction analysis, the model will be updated whenever new knowledge
or evidence is available. Meanwhile for the diagnostic analysis, the accidental path will
be discovered and the posterior probability will be calculated. Based on the results
obtained, a countermeasure to reduce the risk of the important factors were suggested in
order to mitigate human errors.

3.0RESULTS AND DISCUSSION
3.1 Proposed Bayesian Network model
The information was collected based on available literature. Referring to the available

data in existing literature, the three main areas that human error can occur are during
maintenance, monitoring and operation activities. The possible human errors for each
category is summarised in Table 1. The developed Bayesian network the relationships
of the potential human error at many points along the life cycle of a pipeline is shown in
Figure 3. This life cycle provides an organization with the capability to integrate human
factors into programs, standards, procedures, and process using a disciplined approach.

In the category of maintenance error, the pipeline integrity condition usually being
monitored and assessed by the determination of inspection frequency. Other than that,
selection of the inspection tool used to evaluate the threat and tool capability were
taking into account as these will effect on the inspection report. Operational error

3
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category is commonly caused by individual or organisational errors. Individual errors
are those made by a particular person that contributes to an accident.The sources of
organisational errors on the other hand, can be due to poor upper-level management and
poor communication between the top level and the subordinates (Sulaiman, 2017).
Finally monitoring errors, can also be observed with human-system interfaces such as
equipment, software or instructions manual. These errors may eventually result in an

operator making improper decisions.
Management of Decision
integrity threats making
data
Design of inspection
program

Maintenance
errar
Emergency response
training
Maonitoring
By i Alarms not
prioritized
Detect direct
field operators

Operatianal
errar :
to change Experience of
Quality of operatars
communication

Figure 3: BN model of risk due to different errors.

Pipeling
Failure

Documentatian
managerment

3.2 Prior probabilities generation

The variables and states of activities on pipeline that will lead to error tabulated as in
Table 1. In this paper, the probability data were extracted from different literature
sources rather than from a specific pipeline. These data sources were gathered base on
the experience from different pipeline operators in order to generate the prior
probabilities and conditional probability tables.

Table 1: Parameters and the data sources for probability distributions.

Parameter States Probability data sources

Corrosion and rupture Yes, No Shan et al. (2017)

Maintenance error Yes, No Adebayo et al. (2008)
Quality of data Good, Poor Adebayo et al. (2008) and Shan et al. (2017)
Management of threats Good, Poor Muhlbauer (2004)
Decision making Good, Poor Shan et al. (2017) and Muhlbauer (2004)
Design of inspection program Good, Poor Trucco et al. (2008)

Monitoring error Yes, No Adebayo et al. (2008)
Emergency response training Good, Poor Adebayo et al. (2008) and Revie (2015)
Alarms prioritized Yes, No Hill et al. (2012)
Detect and direct field operators Good, Poor Muhlbauer (2004)

Operation error Yes, No Adebayo et al. (2008)
Experience of operators Good, Poor Revie (2015) and Shan et al. (2017)
Documentation management Good, Poor El-Abbasy et al. (2015)
Quality of communication Good, Poor El-Abbasy et al. (2015) and Revie (2015)
Response to change Good, Poor Adebayo et al. (2008), Hill et al. (2012) and Revie

(2015)
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3.3 Bayesian Network analyses

The prior probabilities from the data sources listed in Table 1 were utilised to determine
the probability of pipeline failure. The prediction of the pipeline failure is as depicted in
Figure 4. From the results obtained, the highest error found was from operational
activities contributing to 56%, which include experience of operators (65%),
documentation management (47%), quality of communication (73%), and response to
change (39%) are associated with pipeline failure.Operational errors occur when a
system or process operates outside of or beyond the parameters of its design. For
example, if specified operating practices call for a specific operating temperature, and a
worker makes a decision to exceed this temperature, accelerated corrosion may be the
result.
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Figure 4: BN Model with Monitoring Window

The second highest error of 55% contribution was from monitoring errors which consist
of emergency response training (70%), alarms prioritized (19%), and direct field
operators (83%) caused pipeline failure via corrosion and/or rupture of the pipeline
system. Monitoring errors are said to occur when a problem is noticed, but no action is
taken. Often, a worker may believe that someone else will take care of the problem, or
that it's someone else's responsibility.

Finally, maintenance error with 45% contributions which include quality of data (34%),
management of threats (20%), decision making (60%), and design of inspection
program (42%) will lead to pipeline failure. Maintenance errors occur when
maintenance personnel fails to properly maintain or repair a system or improperly
install one of its components.

3.3.1 Diagnosis analysis

The diagnostic analysis in Bayesian network inference was adopted to calculate the
posterior probabilities of basic eventswhich can be used to find the weak links exist in
the human error of oil and gas pipelines. The posterior probability distribution of each
risk factor in case of an accident.
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In this initialised situation, the nodes were characterised by their prior probabilities as
presented in Figure 4. Suppose it observed that Pipeline Failure is in state Yes and
P(Pipeline Failure =Yes)=1 was entered into the model. This entered evidence increase
the belief in all of the possible causes based on diagnostic inference. This will result in
57% probability due to maintenance, 66% due to monitoring and 68% due to operation
errors. Figure 5 shows the results of the revised posterior probability for each risk
factor. It can be observed that the occurrence probability due to maintenance error,
monitoring error and operational error increase to approximately 57%, 66% and 68%
respectively.
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Figure 5: BN Model for Diagnosis Analysis

Overall the most influence factors are from bad decision making and poor
communication in the organisational. From the analysis, the practical fault diagnosis
and checking should then focus on the probability of these suspected factors to control
the risk of pipeline failure. Therefore, the posterior probabilities can provide new
evidential information for fault diagnosis in real time. By performing this analysis, the
posterior joint probability of all variables/parents given the accident occurrence are
helpful for safety evaluation.

3.3.2 Predictive analysis

Evidence propagation was conducted to predict the probability distribution of the
framework outcome and other relevant variables under the combination of changes in
the assumption of certain variables. The aim of the analysis was to predict the
probability distribution of the occurrence of pipeline failure factors before an accident
occurs. In this section, the propagation of evidence examines several different scenarios
and combinations of events taking place (i.e. 100% probability). To check the proposed
Bayesian network model, the percentage of human error in terms of bad response to
change, no alarms prioritized and bad quality of data were considered. As a result, the
probability of pipeline failure is increases up to approximately 65% as shown in Figure
6.
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Figure 6: BN Model for Predictive Analysis

According to Bayesian logic, the only method to measure a situation with an undefined
outcome is through defining its probability. Bayes' theorem can provide a scientific
method that could be used to calculate, given events in prior trials, the probability of a
target occurrence in future trials. Hence this Bayesian model predictive-analysis is
another example of Bayesian logic which can be used to predict future events for
decision making.

3.4 Counter measures for human error
From the result obtained, some elements need to be considered in the development of

human error management, plan and design include the following:

3.4.1 Controlling human error in maintenance activities
e Running a high quality in-line inspection (ILI) tool for the operation of the
pipeline. A baseline ILI run could identify construction incidents that need
investigation and decide what needs to be done.
e Use of technology to automate repetitive processes that are prone to human
error, such as data entry. Automation of some processes could eliminate the
potential for copy/paste for human error.

3.4.2 Controlling human error in monitoring activities
e Use of expert judgment in rule-based analyses. For example, use of an expert
system to evaluate ILI data could reduce the potential for judgment or detecting
errors.
e Training personnel on heuristics and biases for much more experience in
unexpected situations.
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3.4.3 Controlling human error in operational activities
e Training program for decision-making complexity to know how operators will

communicate with each other for choosing the best way to handle the problems
of the process.

e Experience and knowledge transfer program can reduce human error during
unfamiliar tasks, also in communicating for handling sudden changes.

4.0 CONCLUSIONS

In this study, a quantitative risk analysis approach due to human error for oil and gas
pipelines is constructed using Bayesian network. The proposed model is constructed
according to a cause and effect relationship. Two types of analysis were carried out to
explore the advantage of the proposed approach. Through forward prediction analysis,
the probability of pipeline failure occurrence can be calculated based on the evidence
occurred. Meanwhile, through diagnostic analysis, the critical risk factors that may lead
to failure occurrence were determined. From the results obtained, the proposed
Bayesian network inference techniques can be applied to provide valuable
understandings to the prevention of accidents and safety improvement. The counter
measure could be suggested based on the results in order to reduce the risk of pipeline
failure. In general, this work is mainly based on collection of different existing data
sources and the accuracy of the pipeline failure prediction could be further improved
with more relevant failure data. As Bayesian Network is able to integrate various type
of data, expert judgment together with real data from a specific case study should be
utilised for future works.
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