 Ionic conduction and dielectric properties of yttrium doped LiZr$_2$(PO$_4$)$_3$ obtained by a Pechini-type polymerizable complex route

C.R. Mariappanab; P. Kumarb; A. Kumara; S. Indrisc; H. Ehrenbergd; G. Vijaya Prakashd; R. Josee

a Department of Physics, National Institute of Technology, Kurukshetra, Haryana 136119, India
b School of Materials Science and Technology, National Institute of Technology, Kurukshetra, Haryana 136119, India
c Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
d Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, New Delhi 110016, India
e Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia

ABSTRACT
We report on the ion transport properties of Li$_{1+x}$Zr$_{2-x}$Y$_x$(PO$_4$)$_3$ (0.05 ≤ x ≤ 0.2) NASICON type nanocrystalline compounds prepared through a Pechini-type polymerizable complex method. Structural properties were characterized by means of powder X-ray diffraction, Raman spectroscopy and electron microscopy with selected area electron diffraction. Impedance spectroscopy was utilised to investigate the lithium ion transport properties. Y$^{3+}$ doped LiZr$_2$(PO$_4$)$_3$ compounds showed stabilized rhombohedral structure with enhanced total ionic conductivity at 30 °C from 2.87×10^{-7} S cm$^{-1}$ to 0.65×10^{-5} S cm$^{-1}$ for x=0.05 to 0.20 respectively. The activation energies of Li$_{1+x}$Zr$_{2-x}$Y$_x$(PO$_4$)$_3$ show a decreasing trend from 0.45 eV to 0.35 eV with increasing x from 0.05 to 0.20. The total conductivity of these compounds is thermally activated, with activation energies and pre-exponential factors following the Meyer-Neldel rule. The tanδ peak position shifts to the high-frequency side with increasing yttrium content. Scaling in AC conductivity spectra shows that the electrical relaxation mechanisms are independent of temperature.

KEYWORDS:
Lithium ionic conductor; Impedance spectroscopy; Activation energy; AC conductivity; Dielectric properties