

THESIS

Name	MUHAMAD KHAIRI BIN JUSUP
Student ID	KA13060
Tittle	Kinetic Study On Ferulic Acid Production From Banana Stem Waste Via Mechanical Extraction
Supervisor	Dr Nasratun Masngut
Evaluation Group	BKC 5

Faculty of Chemical & Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

KINETIC STUDY ON FERULIC ACID PRODUCTION FROM BANANA STEM WASTE VIA MECHANICAL EXTRACTION

MUHAMAD KHAIRI BIN JUSUP

(SUPERVISOR: DR NASRATUN MASNGUT)

BACHELOR OF CHEMICAL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

KINETIC STUDY ON FERULIC ACID PRODUCTION FROM BANANA STEM WASTE VIA MECHANICAL EXTRACTION

MUHAMAD KHAIRI BIN JUSUP

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

MAY 2017

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Chemical Engineering.

Signature	:
Name of main supervisor	: NASRATUN MASNGUT
Position	: SENIOR LECTURER
Date	: 25 MAY 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature:Name: MUHAMAD KHAIRI JUSUPID Number: KA13060Date: 25 MAY 2017

Dedicated to my parents, and my siblings.

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my supervisor, Dr. Nasratun Masngut. You have been a brilliant mentor for me. I would like to thank you for your never ending support during my tenure as research student under your guidance, for giving insightful comments and suggestions of which without it, my research path would be a difficult one . Your advice on my research has been valuable. My fullest appreciation goes as well to my co-supervisor, Assoc. Prof. Ir. Dr. Norazwina Zainol for her idea and support from the beginning till the end of my research.

A special thanks to my family. Words cannot express how grateful I am to my mother, father, and siblings for the love and support throughout these years. Your prayer for me was what sustained me thus far. I would like to express appreciation to Nur Anis Nabihah who always be my support in the moments when there was no one to answer my queries and for all the sacrifices you have made on my behalf.

I am also indebted to the Ministry of Higher Education and Universiti Malaysia Pahang for funding my study.

I would also like to thank all of my friends and PhD student who supported me in writing, lab conducting and motivate me to strive towards my goal. I am sincerely grateful to the staffs of Chemical Engineering and Natural Resources Faculty who helped me in many ways and made my stay in UMP pleasant and unforgettable

Table of content

CHAPTE	SR 1
INTRO	DDUCTION9
1.1	Background of the Study9
1.2	Motivation
1.3	Problem Statement
1.4	Objectives
1.5	Scopes of Study12
СНАРТЕ	ER 2
LITER	ATURE REVIEW13
2.1 F	erulic acid13
2.2	Lignin and Hemicellulose14
2.3 L	ignocellulosic waste
2.3.1	Pre-treatment of Lignocellulosic Materials18
2.3.1.	.1 Physical treatment
2.3.1.	2 Physico chemical pre treatment19
2.3.1.	3 Chemical pretreatment 20
2.4 N	Iechanical extraction
2.5 K	inetic study
2.5.1	Kinetic of phenolic acid extraction
СНАРТЕ	CR 3
MATE	RIALS AND METHODS
3.1 S	ample Collection
3.2 E	xtraction process
3.3 K	inetic study of the mechanical extraction of banana stem
3.4 A	nalysis of FA using HPLC
СНАРТЕ	CR 4
RESUI	TS AND DISCUSSION
4.1	FA profile from mechanical extraction
4.2	Solution of kinetic constant
4.3	Selection of reaction order

4.4	Comparison with other research	40
5.0 CO	NCLUSION	42
REFERE	NCES	43

LIST OF TABLES

Table No.	Title	Page
Table 2.1: Composition of son	ne agricultural lignocellulosic waste	17
Table 4.1: Comparison of reac	tion order on different solving method	39
Table 4.2: Comparison with diagonal	fferent type of extraction and raw material	40
with other research		

LIST OF FIGURES

Figure No.	Title	Page
Figure 2.1:	Lignin monolignols	13
Figure 2.2:	Structure of constituent's hemicellulose	14
Figure 3.1:	The flowchart of the ferulic acid extraction	29
Figure 3.2:	Banana stem waste	30
Figure 3.3:	Sugar cane press machine	30
Figure 3.4:	Chromatogram sample of the FA compound	32
Figure 4.1:	Graph of Average Concentration of FA against Storage time	35
Figure 4.2:	The general trend of concentration against time for 0th order reaction	36
Figure 4.3:	The Graph of FA concentration against time by using differential method	36
Figure 4.4:	The Graph of FA concentration against time by using integral method	36
Figure 4.5:	The general trend of concentration against time for 1st order reaction	37
Figure 4.6:	The Graph of FA concentration against time by using differential method	37
Figure 4.7:	The Graph of ln FA concentration against time by using integral method	37
Figure 4.8:	The General trend of concentration against time for 2nd order reaction	38
Figure 4.9:	The Graph of FA concentration against time by using differential method	38
Figure 4.10	: The Graph of 1/FA concentration against time by using integral method	38

LIST OF SYMBOLS

Κ	reaction rate constant
V	volume
Μ	mass of the compounds
Р	applied pressure
D	diameter of the capillary channel
η	dynamic viscosity
1	length of capillary channel
t	time

LIST OF ABBREVIATIONS

UV	ultra violet
FA	ferulic acid
OPF	oil palm frond
LCC	lignin-carbohydrate complexes
AFEX	ammonia fibre explosion
HPLC	high performance liquid chromatography
ССР	chinese chive polysaccharides
UAE	ultrasound-assisted extraction
HWE	hot-water extraction